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The Farthest Point Strategy for
Progressive Image Sampling

Yuval Eldar, Michael LindenbaunMember, IEEEMoshe PoratSenior Member, IEEEand Yehoshua Y. Zeevi

Abstract—A new method of farthest point strategy (FPS) imation of the whole image after each stage of the sampling
for progressive image acquisition—an acquisition process that process. In the raster scan and similar techniques, the scanned
enables an approximation of the whole image at each sampling 5re5 data is revealed at the highest resolution, while the rest

stage—is presented. Its main advantage is in retaining its unifor- fthe i . letel K Th tural
mity with the increased density, providing efficient means for or the image remains completely unknown. 1he natural aug-

sparse image sampling and display. In contrast to previously mentation of the raster scan for progressive sampling purposes
presented stochastic approaches, the FPS guarantees the unifor-would be to sample the image on a series of rectangular grids
mity in a deterministic min-max sense. Within this uniformity  wjth increasing resolution. The sample distribution obtained

criterion, the sampling points are irregularly spaced, exhibiting i, yhe |atter case after each stage is uniform, but the regularity
anti-aliasing properties comparable to those characteristic of . . : o .
the best available method (Poisson disk). A straightforward Of the grid usually yields annoying aliasing effects, especially

modification of the FPS yields an image-dependent adaptive at the first stages.

sampling scheme. An efficientO(N log V) algorithm for both Aliasing is inherent in regular subsampling, unless the
versions is introduced, and several applications of the FPS are image is lowpass filtered to the appropriate bandwidth before
discussed. it is sampled. For many applications such prefiltering is
Index Terms—Anti-aliasing, progressive sampling, progressive not feasible, and therefore irregular sampling is sometimes
transmission. adopted. Note that a sampling pattern may be irregular and
yet be uniform. Uniformity merely means that the sample

I. INTRODUCTION density is approximately constant, thus providing an equal

. . . . mount of information about every part of the image. Several
HE task of progressive sampling of two-dimensiona . o .
. ; ; . : works suggest to use stochastic sample distributions in order
(2-D) data is considered. This task is of interest, for ) . ) o
. : . break the pattern’s regularity and avoid aliasing [6], [8],
example, when the time required to sample or transmit . o :
the data is too long, but a uniform approximation of the da 5]. A more detailed description of this approach can be
9. P und in Section V. Unfortunately, the stochastic distribution

may also be useful. In progressive sampling, the avallablet%at exhibits the best anti-aliasing properties—the Poisson

D data and the corresponding quality of this approxmatlo&llsk distribution—cannot be easily fitted into a progressive

increase with time. To enable such an approximation, we . . 4 .
rﬁ\@plmg framework, since there is no obvious way to add

) S
ropose a method for generating a sequence of planar poli . . X
prop 9 9 q P P oints to the low resolution sample pattern and still retain the

with spatial distribution that is uniform for any number o tial distributi In thi text hould i
samples. While the specific example of monochromatic ima gme spatial distribution. 'n this context we shouid mention
e uniformly distributed deterministically generated indices

sampling is discussed, the results apply to many 2-D d : SO
acquisition applications such as terrain altitude measurements; Dl)fﬁl(.:an, suggei;ted in [9], [11],{’ \II.Vh'Ch IS a ﬁ.seuqora?d.olm
range sensors, etc. The proposed algorithm is suitable ?@rice Hing slcazlatqggt_congfrtuen |rr11es£ resufting in a tairly
any 2-D data where the correlation between sample val orm sample distribution after each stage. .

e propose here a progressive sampling algorithm, called

decreases with the distance between the sample points, a }% ) indEPS) desianed i |
the case for most natural images. arthest point sampling ), designed to provide a truly

The common raster scan fails to meet the fundamenﬁi;}f_na"niC resolution. The main idea is to add one sample

requirement of progressive sampling—to provide an approﬁ%g'nt aF a time, and to place it n the m_lddle of the Iee}st—
known image area. The nonadaptive version of the algorithm
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Fig. 1. Occluded point situationlz, (p) depends on the image values at
$1, 82, and sq4, but not onI(ssz), sincess is occluded byss. In the 1-D 0.2f J
case, all sample points are colinear, hence the image interpolation over each
unsampled segment is determined by the sample values at the segment’s egqg

information about the image structure and adapt the samplei-
density at each region to the local information content. Adap-
tive sampling can be introduced within the framework of the-os
FPS by a minor change of the algorithm, yielding enhanced
reconstruction with no additional computational cost. o 0 20° 30 a0 50 eor 70 a0 oo 1o
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Il. THE FARTHEST POINT STRATEGY

All the progressive sampling methods mentioned above (e¥xs| i
cept UDDI) take the same coarse-to-fine approach—some kind
of uniform sampling is applied again and again in differentoas} _
resolutions. This paper suggests a different concept—adding
one sample point at a time, with the key question being wheres
the next sample should be placed. If our goal is a good
reconstruction, the next sample location should be the on®&2f ]
that minimizes the expected overall reconstruction error. Let
us adopt a common stochastic model [17] and regard the imaQg/
as a sample function of a continuous 2-D stochastic process,
stationary in the wide sense, with correlation that depend%“
exponentially on the distance

E[I(%,yz)af(%a%)] = gem M
— o2 MW @wi—z)PH(yi—y;)? (2.1) 0 0 20 30 40 50 60 70 80 90 100

T
L

0.05H S

. . . . . . Fig. 2. lllustration of the relatively simple 1-D case: The expected recon-
Choosing the optimal linear estimator for the image intekyyction error variance at every point before (top) and after (bottom) adding

polation, it is not difficult to show that the resulting mearm sample point at: = 48.
square error (MSE) afteN samples depends on the sample

locations, (xi,y:), and is [19] (1-D) counterpart. Consider a 1-D stochastic sigial) with
exponential correlation, defined over the line segnient].
Let S = {z;}:=)~! be a set of samples of this signal (for
= // (0 = VIR™'V)dzdy (2.2) simplicity, we assume that,b € S). An important property
[mage Area of the exponential correlation model is that the optimal linear
where estimator] r(x) is invariant to “occluded” sample points (see
Fig. 1 for illustration). This property facilitates a closed-form
analysis of the 1-D case, since every pointe [a,b] is
and occluded from all sample points except two. The expected
TSR/ e v psen = o reconstrucFion error over the segment between two adjacent
Vi=o"c forall 0<4,j <N. sample points;;, «;, denotect?, , ;, depends therefore only

Therefore, theoptimal sampling strateggifter N — 1 points  ©N its lengthL = |z; — z;|. Applying (2.2) to this particular
are sampled would be to choose theh sample so that (2.2) c@se Yields

5?\"(370 v IN-1,Y0 " yN—l)

Rij = g2e M (@i—m) 2+ (yi—y;)?

is minimized. Note that the expected MSE does not depend 5 5 A [T, T 1

on the Nth sample value, but on its location only. This is a sy = €1(L) = / (0" = VIR™'V)da

direct result of the model’s stationarity—the desired sample 1 _i_ZZ_Q,\L 1

distribution is uniform, since the statistical properties of the =o? <LW - X) (2.3)

image are spatially constant.
Since minimizing (2.2) is a difficult task, apparently with It is evident that an additional sample point affects the
no analytic solution, let us first consider its one-dimensionegconstruction error only in the segment which contains it (see
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Fig. 2). Addings at distancel from s; reduces this error by the VD. The discussion is confined to planar points and the
Euclidean distance between them, though the VD is well

2 _ 2 2 2 ’
Ae[wwﬂ(d) = ei(d) +e1(L — d) —ex(L). (2.4) defined for spaces of higher order and with any other metric

This function is minimal foil — % meaning that v should as \_/veII. The Delaunay triangulation (DT) is also reviewed as

be placed at the middle of an unsampled segment. The decreaegDerdUCt'on to the next section.

- . _ i=N-1
of the total reconstruction error is a function of the segment’s efinition 3.2: Let 5 = {si}; be a planar set of
length L, and is

points. TheVoronoi cell of the points;, V(s;), is defined as
the set of all planar points that are closerstothan to any

AZ(L) = 1 <25% <£> _ sf(L)) other point inS. The Voronoi cell is a convex (not necessarily
b—a 2 bounded) polygon with no more than—1 sides. The partition
a2 27, 1 of the plane intoN Voronoi cells is called the VD ofS,
“b—a <6>\L oA X) (2.5)  vD(S). The cell's boundaries are defined by the edges of the

diagram, and its corners are the diagram'’s vertices (see Fig. 4).
This is a decreasing function of the segment's length  Definition 3.3: Two points s;,s; € S are neighboring
Hence, theoptimal sampling strategy for the 1-D caskould pointsif their Voronoi cells share a common edge.
be as follows: Sample the image at the middle of the longest\we shall assume hereinafter that the pointare in general
unsampled line segment, i.e., at the point which is the farthggsition, i.e., no four points lie on the same circle. Under this
from the current sample set. assumption, the following properties hold.

Unfortunately, the 2-D problem cannot be reduced into SUCRy £yary voronoi vertex is the intersection of exactly three

a simple form and requires use of numerical minimization edges. This implies that every vertexc VD(S) is the
technigues. Such an implementation of the optimal strategy is center of a circle’(v) passing through three points 6f

not practical due to its high computational cost. An example o,y £, every Voronoi vertexs € VD(S) the circle C(v)
the decrease in the overall reconstruction error, as a function does not contain any point af, except the three points

of the location of the next sample point, was calculated it passes through.

using (2.2) and is illustrated in Fig. 3. One may observe3 A Voronoi cell of a points € S is not bounded if and
the rapid increase qf this benefit measure as we move away only if the points resides on the boundary of the convex
from the sample points, and that the influence of the distant hull of S.
points seems to be quite small. Inspired by this observation
we approximate the optimal 2-D strategy by augmenting the
solution derived for the 1-D case. We suggest the followinfaﬂl
progressive sampling strategy, FPS.

Definition 2.1—Farthest Point Samplingsiven a sample
setS = {s;}:=N~" of an imagel(z, ) defined over a region ~ Since the problem of vector sorting can be reduced to VD

'Further information regarding the VD may be found in [2]
d [20].

A. The Complexity of VD Construction

=0
A, the next sample should take place at the ppintvhich is construction for an arbitrary point seB(N log V) is a lower
the farthest from the previous samples, i.e., bound for the worst case time complexity of the latter task.
Shamos [20] suggested a recursive splitSoffollowed by a
d(p,5) = PEvA (d(g,5)) merge of the two halves VD’s. This algorithm is optimal, but
very complex and difficult to implement.
= 1(5163} <01<rzyi<nN(d(q, 3i))>' (2.6) An alternative approach is to build the VD incremen-

tally—starting with the VD of a small subset &f (e.g.,
This principle can be interpreted geometrically as followshree points) and then adding the rest of the points, one at
The next sample point is the center of the largest empdytime, modifying the diagram at each step [5], [13]. The
circle that lies within the image boundaries. It seems that thisodification stage starts by finding the nearest neighbor to
strategy should be effective for any 2-D data, characterizéte new point in the current sample set, and then constructing
by a correlation function that decreases with the distance. the Voronoi cell of the new point. These algorithms are simple,
this case, the point farthest from the sample set is intuitivelyut offer worst case complexity aP(N?), meaning that for
the least known one. We have proved it rigorously for an arbitrary set of points they are suboptimal. On the other
1-D signal with exponentially decreasing correlation. In thikand, if the points are uniformly distributed (e.g., a sample of
following sections we examine the generated sampling pattefthomogeneous Poisson point process), then the expected VD
and suggest an efficient algorithm for implementation of theéonstruction time i©)( N log N) [13]. We should point out that
FPS. the task of finding the nearest neighbor is the one yielding this
complexity, while the average time for VD update is constant.
lll. THE VORONOI DIAGRAM

The FPS strategy can be efficiently implemented through The Delaunay Triangulation
incremental construction of a Voronoi diagram (VD). The VD A triangulation of a set of planar poinsis defined as a set
is a well known data structure in computational geometrgf nonintersecting line segments between the points, dividing
widely utilized in the context of proximity problems. In thisthe convex hull ofS into triangles. A given set of points
section we briefly review some of the basic properties ofiay have many legal triangulations, but for most applications
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Fig. 3. Decrease in the overall reconstruction error, as a function of the location of the next sample point, computed over a sampled square surface.
The surface was sampled densely along its borders and at some other randomly selected points. The same function is described as a three-dimensional
(3-D) surface (top) and level-crossing curves (bottom). The dominance of the sampling points (which are indica)eth bts close neighborhood

stands out, especially in the second description.

one usually prefers a triangulation which is the closest to anProperty 2) of the VD implies a duality between the VD and
equiangular one. One of the most common criteria is choositige DT, i.e. every vertex of the VD corresponds to a triangle
the triangulation in which the smallest angle is maximal (thie the DT (see Fig. 5). Hence, buildingD(S) provides us
min-max angle criterion). A good survey of various min-mawith an optimal (equiangular) triangulation 6fas well.
criteria can be found in [3].

Let 7" be a triangulation ofS. If for each triangle inT’
the inscribing circle contains no other point 8f(except the
three points that form the triangle), théh is the Delaunay IV. THE FPS AGORITHM AND PROPERTIES
triangulation, DT(.S). If the above mentioned general position The FPS, defined in Section Il, requires at each stage to
assumption holds, then the DT exists and it is unique. Furthéihd the image point that is the farthest from the current set of
more, Sibson [24] proved in 1978 that the DT is the optimalample pointsS. This task may be executed efficiently using
triangulation according to the min-max angle criterion. The Dihe Voronoi diagram of, yielding a spatial distribution of the
also guarantees the smoothest piecewise linear approximat@merated sampling pattern, which is uniform in a deterministic
for a given set of samples [22]. sense.
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Theorem 4.1:The pointp € A, which is the farthest from
the points of the sample sét lies at a vertex of the BVD of
S (for the simple proof, see Appendix B.)

Let us now rephrase the FPS algorithm in terms of the BVD,
as follows.

1) Create an initial point sef®, consisting of the im-
age corners and an additional, randomly chosen point.
CalculateBVD(S?®) = (V?,E®). n = 5.

2) Find the pointp € V™, which is the farthest from the
set of sample point$™.

3) S = S7 U {p}.

CalculateBVD(S™*1) [5], [13].
n =n+4 1.

4) If more samples are needed, go to 2). The exact stop-
ping rule depends on the application—theoretically, this
sampling process could go on indefinitely.

We are now in a position not only to prove that such an
implementation is efficient, but also to make some strong
claims about the distribution of the sample points. Consider
the BVD of the set of sample points generated by the above
described algorithm. LetV, E) denote the graph associated
with BVD(S). Let R(v) indicate, for every vertex € V, the
distance of the vertex from the nearest sample point, and let
vm,Un be the closest and farthest vertices to and fi§mas
follows:

Fig. 4. Voronoi diagram. Sample points are marked with

R(v)=d(v,S) = Irélg d(v, s)
Ry, = R(vm) = min _ R(v)
veV —v3

Ry = Rlupy) = EIEEEJ R(v).

Note that distances t&'® are excluded from the definition of
Ry and R,,.

The following theorem introduces deterministic bounds on
the distance between sample points and for ratio between the
radii of the maximal empty circles associated with the set
of sample points. Note that all the theorems in this section
were derived for the specific case of a set of points that was
generated by the FPS algorithm. They do not hold for the
general case of an arbitrary sequence of planar points.

Theorem 4.2:

Fig. 5. Delaunay triangulation. Sample points are marked withnd the i ;
dotted lines describe the corresponding Voronoi diagram. 1) t';Oer :I\éeorz;?nt g S&Z]F;l; poingswhich was generated by
UM > m-

2) The distance between each pair of sample paints; €
Since our domain is finite, we consider a bounded Voronoi  § s at leastR,,.
cell associated with each sample point, defined as the corB) The distance between neighboring sample points is no
junction of the Voronoi cell with the image definition area.  more than2R,,.
The assembly of all the cells associated withmakes up its
bounded Voronoi diagram (BVDBVD(S) = (V, E), where (For proof, see Appendix B.)

E and V' are the sets of the diagram’s edges and vertices,Theorem 4.2 expresses the uniformity of the sampling
respectively. For simplicity, let us confine ourselves hereaftgattern generated by the algorithm. Its first and third parts
to a rectangular image and assume that its corners are sampigdure that there will not be any large gaps between the
Consequently, the image is segmented into convesamples, while the second one excludes the possibility of
nonoverlapping, and bounded polygons. Every boundéstal clustering of sample points. Note that this theorem
Voronoi cell contains one sample point and all the imageolds dynamically, i.e., the process may be stopped at any
points that are closer to it than to any other sample poinime and will still yield uniformly distributed samples. This
implying the following relation between FPS and the VD. deterministic sense of uniformity allows us to make the
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following claim, which is crucial for the analysis of the FPS%
time complexity:

Theorem 4.3:The number of neighboring points (definition
3.3), for every sample poird € S, is bounded (smaller than
24).

(For proof see Appendix B.)

A tighter bound on the number of neighboring point
is introduced in Appendix A; But the mere existence o§
a constant bound (Theorem 4.3), regardless of its valu
is sufficient to determine the time complexity of the FP
algorithm. (@ (b)

For this purpose, the above described FPS algorithm may be
divided into two tasks—incremental constructionR¥D(S)
and finding the farthest Voronoi vertex at every iteratio
In the general context of arbitrary point sets,the incrementa‘p
construction of Voronoi diagram cannot be done at less thg i f
O(N?) time, as claimed by Gowdat al. [12] and proved
in [10]. The algorithm consists of finding the sample point \ \ )
which is closest to the new one (for FPS series—one of the
corners of the dual Delaunay triangle) and then constructiﬁ(
the bounded Voronoi cell of the new point, edge after edgeF

The time complexity of the VD madification, after one point
was added, depends on the number of the edges of the Voronoi
cell associated with the new point, i.e., the number of itﬁ:-
neighboring points. In an arbitrary sequence there may be g
many asN neighboring points, yielding?(N?) complexity
for the whole process. On the other hand, the number Bf

© —

of each iteration taO(1).
For efficient implementation of the farthest vertex search
should maintain a balanced binary tree of pointers to the V

point. Maintenance of the tree tak€$ N log V) time, yielding

O(Nlog N) time complexity for the whole FPS algorithm.rig. 6. Reconstructions of an image from various patterns of 4096 sampling
The existence of such an efficient algorithm should enamein(tj- (a)(Ofiginal)irgageb (b) Sguare regulardg)riﬁ(Sdﬂ;fR = 6d49 db). (C)d

: ; ; ; At Random (Poisson) distributio8NR = 4.78 . Jittered square gri
integration of the FPS in practical applications. (PSNR = 5.21 db). (e) Poisson disk distribution’6NR = 5.24 db).

(f) Farthest point samplingPSNR = 5.38 db). Note that although the
signal-to-noise ratio is the highest for the regularly sampled image, its visual

V. THE ANTI-ALIASING PROPERTY OF THEFPS appearance is the least faithful to the original (due to aliasing effects).

The FPS was shown to generate a sequence of uniformly
distributed points at every stage, exhibiting high data acquiutwards—i.e. the regions near the image boundary contain
sition rate. In this section we show that the irregularity dfigher spatial frequencies. Fig. 6(b) is a zero-order hold re-
this pattern makes it particularly suitable for sampling image®nstruction of this image, obtained from regular sampling on
designated for visual display. a low-resolution square grid. The aliasing effect stands out,

Regular sampling (i.e., fixed intersample distance) of ia the form of jagged edges and imaginary circles that may
spatial signal corresponds to its duplication in the Fouriehange the semantic interpretation of the image. Fig. 6(c)—(d)
space. If this signal is not bandlimited, or if it is sampledepicts reconstructions from the same number of samples
below its Nyquist rate, the high-frequency components appgdaced irregularly. These subsampling methods introduced, in-
at low frequencies and give rise to aliasing. Irregular samplingtead of false structures, wideband noise—amorphic distortion
on the other hand, corresponds to convolution of the sigrthkt fades away the thinner circles but preserves the essential
with a wideband noise, which has a blurring effect. Thpattern of the image.
coherent duplication of the image in the frequency space yieldsAnti-aliasing using irregular sampling was mostly investi-
appearance of semantically significant structures that interf@ated in the context of computer graphics. Crow [7] was the
with its perception much more than noise of the same enerijst to note that several common defects at computer gener-
[21]. ated images, such as those shown in the previous example,

For example, Fig. 6(a) depicts a densely sampled syare caused by the well-known aliasing phenomena. Several
thetic image of concentric circles, thinning from the centestudies discussed the prevention of such defects by stochastic
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spectrum yields prominent, grainy noise, decreasing the visual
quality of the reconstructed image. The most popular sampling
pattern is generated by jitterring a regular (usually square) grid.
The spectral analysis exhibits fairly low power at low frequen-
cies, leading to a much better results than those achieved by
Poisson distribution. Nevertheless, the Poisson disk (PD) is
undoubtedly the most suitable distribution for image sampling;
the points are randomly distributed, provided that the distance
between each pair accedes a certain value (the disk diameter).
The spectrum of this sampling pattern is characterized by blue
noise—almost all of the power is distributed beyond a certain
threshold frequency. Generating a Poisson disk distributed set
of points is a task of extremely high complexity, which makes
it impractical for most applications.

The FPS properties seem to resemble PD constraints in
certain respects. The bounded ratio betwdey and R,
guarantees a uniform distribution of the sample points, and
the random initialization yields irregularity. Indeed, the power
spectrum of the FPS pattern [see Fig. 7(d)] is similar to the
one shown at Fig. 7(c). It is radially symmetric (isotropic
distribution of the sample points) and most of the power
is spread beyond the threshold frequency, as a wideband
noise. This spectral character indicates that the pattern is
suitable for image sampling, as demonstrated in Fig. 6(f). The
reconstructed image matches the one obtained by PD sampling,
and outperforms the other methods, while its computational
cost is only slightly higher than that of the common Jitter
pattern. Another important advantage of the FPS, compared to
PD and Jitter, is the possibility to generate additional points
progressively, so there is no need to predetermine the required
number of samples.

VI. ADAPTIVE FPS

The above described FPS strategy was derived from a
stationary image model, leading to the same uniform sampling
pattern for every image. For natural images, however, high
sample density is needed in areas with finer details while the
smoother parts require much lower resolution. More efficient
sample distribution can thus be achieved by adopting a non-
stationary image model. The next sampling point at each stage
should be selected according to the current sample locations

Fig. 7. Stochastic 2-D sampling patterns and their power spectra. (a) Rénd the estimated local bandwidth [16]’ [26]' extracted from

dom (Poisson) distribution. (b) Jittered square grid. (c) Poisson disk distritilie previous sample values.
tion. (d) Sampling according to farthest point strategy.

The most natural augmentation to the FPS would be to
define a different metric over the image area, expressing

distribution of the sample points [6], [8], [15]. The samplindts estimated structure, and to choose the point which is
patterns that gave the most visually pleasing results were fouhe farthest in this metric. This metric may be derived, for
to have a “blue” spectrum: There was no power peak at aeyample, from a nonstationary stochastic image model, so that
nonzero frequency (no aliasing), and most of the noise powtle distance between two points in a high variance region will
was concentrated at the high-frequency range, to which the greater than the one of an equidistance pair in a smoother
human eye is less sensitive. (This criterion was also introducesjion. The main obstacle is that the VD is very difficult to
at halftoning context [25].) Previous studies focused on threalculate in a non-Euclidean metric—it is well defined, but
types of stochastic distributions, illustrated at Fig. 7(a)—(cfs edges are not straight lines and finding the farthest point
All those distributions are isotropic, so their energy spectia impractical. We shall therefore restrict ourselves to vertices
are radially symmetric and can be displayed as 1-D functions.the Euclidean VD, choosing at each stage the vertex that
The use of Poisson (uniformly) distributed sample points maximizes aweighted distancdunction. This new priority
not common, although it is very simple to generate. Its whifeinction should express both the vertex geometrical distance
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starting at the Euclidean distance and increasing the adaptivity
as the sample density grows.

Experimental results of the adaptive FPS using this function
are shown in Figs. 8 and 9. The sample distribution clearly
reflects the image structure—samples are denser at regions of
high variance (like contours). This weight function, (6.3), gives
a good balance between high resolution at areas of interest
and reasonable data acquisition over the rest of the image,
compared to other weight functions checked [10].

The images in Fig. 9 were all reconstructed from the cor-
responding sample sets by the same scheme—a weighted
average of the four nearest neighbors

(@) (b)

Y
1) = S

(6.4)
D=1 dpa)

where {si}zj are the four sample points which are closest

to the center of the pixep. Since this scheme is not biased
toward any of the sampling methods, we believe that the results
- faithfully reflect their relative differences. Detailed discussion
8 R : SR of methods for image reconstruction from irregularly spaced
© (d) samples is beyond the scope of this paper. Note, however,
Fig. 8. Progressive construction of the adaptive FPS sampling pattem.a_t,K'neare_St'nelghborS schemes can be_ Implement?d very
(a)—(d) shows the first 1024, 2048, 3072, and 4096 samples, respectively€fficiently using the BVD of the sample points. It is evident
from Fig. 9 that replacing the Euclidean distance function with

he weighted one improves the appearance of the reconstructed

from the current Sa"T‘p'e set and the estimated Ipcal ba_ndW| mage, while preserving the low computational complexity of
We actually approximate the image to be stationary in a t e algorithm

vertex neighborhood—a reasonable assumption for sample sets
that are not extremely sparse.

Let us approximate each image region to be a segment
of a bounded, bandlimited function. For such function, the
Bernstein inequality [1] holds, as follows:

|f'(z)| < 2rBM

VII.

According to the farthest point strategy proposed for pro-
gressive image sampling, the image should be sampled at each

(6.1) stage at the point which is the farthest from all the previously
acquired sample points, i.e., in the center of the largest empty

with B being the function’s bandwidth ang/—the bound jrcle.

on its amplitude. Calculating the inverse functions to the Tpig sampling strategy has the following attractive proper-

inequality found in [4], we derive an upper bound Brbased tjeg.

on two sample values. Lefi(p), I(q) be the image values at

points p and ¢, I(p) < I(q), then

B Z Bmin(p7 Q)

SUMMARY AND DISCUSSION

e The generated pattern of sample points is uniform in
the sense of having an upper bound on the ratio of
distances between the farthest and closest neighboring
points. This uniformity criterion is much stronger than

(6.2)

with the statistical sense of uniformity suggested by previous
arcsin (21(q)_1\4) _ arcsin (zf(p)—M) sampling schemes.

Buin(p, @) = M M + The number of sample points and the local sampling den-

2rd(p, q) sity change continuously, avoiding the stepwise change

From this bound we derive the suggested weight function characteristic of common pyramidal structures. This im-

plies, among other advantages, that stopping the scan at
any arbitrary step always yields the most uniform pattern
for the given number of samples. This also stands in
contrast to schemes that rely on adaptive subdivision of
cells in coarse partitioning, in which the boundary of the

W(v) = R*(v) (6.3)

max
s:,8;CN(v

)(B111in(3i7 31))

Defining the vertex neighborhoo®¥ (v) as the closest three
sample points, andR(v) being the vertex distance from

the current sample set. Note that this is only an exam-
ple—choosing an appropriate weight function may depende
on the specific application, since it reflects someoriori

knowledge about the image. A more sophisticated approach
would have been to construct a time-varying distance function,

large cells are visible.

The location of sample points is irregular and thus reduces
significantly the aliasing effects, implying that the result-
ing reconstruction from the sampled data is particularly
suitable for display. The sampling scheme possesses the
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©

Fig. 9. Comparison of reconstructions from sets of 4096 samples with different distributions. (a)—(c): uniform regular sampling on a square grid
(PSNR = 18.84 db), uniform FPS PSNR = 18.58 db) and adaptive FPSPENR = 18.08 db). Note again that th&€ SNR measure fails to reflect
the superior visual quality of the FPS-based reconstructions.

“blue noise” characteristic known to be optimal for imagevorld is constructed from a model describing the displayed
display. objects, the light sources, etc. The expected luminance is
* The sampling strategy can be modified to adapt to tlalculated at a set of sampling points, and the gray level of
content of the sampled image; e.g., more detailed imagach pixel is interpolated from the luminance values in its
segments can be sampled more densely. This adaptidghborhood. Since evaluating the luminance at each sample
version is readily obtained by replacing the distance priopoints is computationally expensive, the overall rendering time
ity function, which is independent of the image, by somdepends heavily on the number of samples taken. Several
image-dependent or task-dependent priority function. works suggested stochastic distribution of the sampling points,
+ An efficientO(NV log V) algorithm, based on the Voronoireducing their number while retaining visual quality of the
diagram corresponding to the sample set, is available fi@constructed image [6], [8], [15]. The uniformity of the
implementing both the uniform and the adaptive scannifePS point sequence may allow great reduction of the size
processes. of sample set, while the irregularity of the pattern prevents
* The pseudorandom sampling pattern is well defined onggasing effects. A parallel ray tracing system using the FPS
the locations of the first few sample points are given (alsgas already implemented and reported to yield good results,
for the adaptive scheme!), allowing for efficient imagés shown in Fig. 10 [18].
transmission. This causality feature enables incrementalThe proposed scheme is in particular attractive for applica-
BVD construction at the receiving site too. Transmittingion in progressive transmission of images, which also benefits
the location of the next sample points is redundant, sinf@m both the uniformity and the anti-aliasing properties.
their gray values contain this information implicitly. ~ Encoding the first few sample point locations, and sending
The sampling scheme presented in this paper is readihem before transmission of the gray-level information, is a
available for several applications. A promising direction is itsonvenient way to encrypt the image (see also [23]). Finally,
application to ray tracing, where the image of an synthetthe farthest point approach may find vast use in the context of
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i APPENDIX B
_;,,-_,.',. H“:f 10} - THEOREM PROOFS
e X . . . .
Pag” In this appendix, we prove all the FPS properties claimed

above. Note that these claims hold only for point sequences
that were generated by the FPS algorithm.

Proof of Theorem 4.1:Let us assume that the farthest point
p liesinsidea BVD cell, corresponding to a sampling point
The line that starts at and passes throughintersects the cell
boundary at the poing. Since the boundary is a convex and

! - closed polygong cannot be betweers and p, meaning that

@) (b) d(q,S) = d(q,s) > d(p,s) = d(p,S), which contradicts the

Fig. 10. Example of the application of the farthest point strategy to imai?;t thatp is the farthest point fron$. This y'elqs tha[u must
rendering by ray tracing [18]. (a) Locations of the first 10000 sample pointé¢ on a BVD cell boundary, and for geometrical reasons—at

generated by the adaptive FPS scheme. (b) Reconstructed image. one of its corners, which are BVD vertices. O
Proof of Theorem 4.2:

intelligent vision systems [14]. By using a task-dependent pril) The vertexv,, corresponding ta?,, lies at the center of

ority function, one can control the scan to enable extraction of & circle defined by three sample poiniss;, sy—let us

specific semantic information, thus implementing a purposive ~assume without loss of generality thak j < k. Since

scan. vm € V — V?, thenk > 5. According to the algorithm,
the image is sampled at the point which is the farthest
from any existing sample point, hence

.8:) > mi ‘ = R )
d(8k7sz)_01§rlllgkd(8k781) Ry, (B.1)

APPENDIX A
A TIGHTER CHARACTERIZATION OF THE FPS WNIFORMITY

The upper bound on the number of neighboring points, Where Rf,, the radius of the largest circle containing
which was introduced in Theorem 4.3, is very loose. In this N0 sample point of thet first ones, is a monotonic
appendix we introduce a tighter bound on this number and nondecreasing function, i.eR%, > Ry, for anyn > k.
show that the size of the smallest angle in the corresponding Forn = N we get
DT is also limited. These bounds hold for almost all the Rk, > Ry, for all k. (B.2)
points is the FPS sequence, characterizing its uniformity in
a deterministic sense.

Recalling the duality betweeWD(S) and the Delaunay
triangulationDT(.S), we can show that the smallest angle in
all DT(S) triangles is bounded from below. 1 1 1

Theorem A.1:Let S be the set of sample points generated Ry > =d(sg,si) > =Rk, > ZRyy. (B.4)
by the FPS algorithm. Le® be the set of all the triangles 2 2 2

included inDT(.S) and corresponding to Voronoi vertices that 2) Let uz_assumhe Wl'tho_urt] losﬁ of geinerallty htrjat< i
lie inside the image boundary. Then According to the algorithns; lies atvj,, i.e., there were

no sample points &, distance froms;, and in particular
) d(s;,s;) > RY,. In the proof of the previous theorem, we
> 95 <] 2y, = AVM !
10%189 = 25667 showed thatR}w > Ry, henced(si, Sj) > Ry
3) Consider two neighboring sample poistss; € S that
share the two BVD vertices;, v;. Sincev,, lies at equal

d(3k7 Urn) = d(szv Urn) Z d(3k7 32) (B‘?’)

DO | =

but d(sy,vm) = R, and then, by (B.1, B.2, B.3)

(For proof, see Appendix B.) _ _ _ distance froms; and s;, a triangular inequality yields
The min-max criterion on the angles in a trlangulan(_)n Ld(si,s;) < d(w,s;); but by definition d(vy,s;) =
roughly quantifies the resemblance of the triangles to equian- R(ui) < Ry, henced(s;,s;) < 2Ry O

gular ones. Thgorem A'l imposes a Iowgr bound on thiSProof of Theorem 4.3:According to Theorem 4.2, 3), all
measure of equiangularity, and also lets us introduce a tlgh{ﬁé neighboring sample points of lie inside a circle with

bound on the number of neighboring points for samples th("?‘énter ats and 2Ry, radius. According to Theorem 4.3, the

are not too clo§e to the image boun(_jary: . distance between each pair is at ledst;. The maximum
Thgorem A.2.Fc_)r every sample pomi € 5, the distance number of points that can be placed inside the circle following
of Wh.'Ch from the Image boundary is at ledgy,, the number this constraint is equal to the number of circles with radius
of neighboring points IS N0 more than 14. 0.5R,, that can be placed inside a circle with radiuiSR ;.
(For proof, see Appendix B.) ggls easy to introduce a (loose) upper bound to this number

. l_\ll_?]te that d:el to zoandzry ef:ects,l thte bﬁunds ||ntrod_u<§ the ratio of circle areas—hence, the number of neighboring
in Theorems A.1 and A.2 do not apply to all sample points. . . (#NP) is bounded by

However, the fraction of samples that do not meet the the- _ )
orem conditions decreases as the total number of samples is #NP < m(2.5Rnm)°

—1=24. O
increased. m(0.5R)?
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Proof of Theorem A.1:Since the full proof of this theorem [18]
[10] simple yet quite tedious, we confine ourselves to the
guidelines of the proof. Observing the angles between the thig
sample pointss;, s;, s, forming the minimal angle and the
corresponding VD vertex, we take advantage of the fact thaf?"]
d(v,s;) < d(s;,s) [Theorem 4.2, 2)] and, by trigonometric(21)
arguments, show that

Ry V3
2Ry 4
Proof of Theorem A.2.Let s, be any sample point and
mark its neighboring pointsy, s, - - - s S0 thats;, ;41 (for  [24]
any 0 < k < 1) and sy, s; are neighboring points. For any 25
vertex v that belongs to the BVD cell ofg, R(v) < Ry, [26]

by the definition of Ry, but sq is at leastRy; away from
the image boundary; hence, all these vertices lie within the
image boundary and the constraints of Theorem A.1 hold for

(22]

sinf > sin(120°) =0 > 25.66°. O

(23]
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all the triangless;s;y1v. Let us denote the angle neag

in each of them byd;, then Zle #; = 360°. On the other
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