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Progressive Image Sampling
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Abstract—A new method of farthest point strategy (FPS)
for progressive image acquisition—an acquisition process that
enables an approximation of the whole image at each sampling
stage—is presented. Its main advantage is in retaining its unifor-
mity with the increased density, providing efficient means for
sparse image sampling and display. In contrast to previously
presented stochastic approaches, the FPS guarantees the unifor-
mity in a deterministic min-max sense. Within this uniformity
criterion, the sampling points are irregularly spaced, exhibiting
anti-aliasing properties comparable to those characteristic of
the best available method (Poisson disk). A straightforward
modification of the FPS yields an image-dependent adaptive
sampling scheme. An efficientO(N logN) algorithm for both
versions is introduced, and several applications of the FPS are
discussed.

Index Terms—Anti-aliasing, progressive sampling, progressive
transmission.

I. INTRODUCTION

T HE task of progressive sampling of two-dimensional
(2-D) data is considered. This task is of interest, for

example, when the time required to sample or transmit all
the data is too long, but a uniform approximation of the data
may also be useful. In progressive sampling, the available 2-
D data and the corresponding quality of this approximation
increase with time. To enable such an approximation, we
propose a method for generating a sequence of planar points
with spatial distribution that is uniform for any number of
samples. While the specific example of monochromatic image
sampling is discussed, the results apply to many 2-D data
acquisition applications such as terrain altitude measurements,
range sensors, etc. The proposed algorithm is suitable for
any 2-D data where the correlation between sample values
decreases with the distance between the sample points, as is
the case for most natural images.

The common raster scan fails to meet the fundamental
requirement of progressive sampling—to provide an approx-
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imation of the whole image after each stage of the sampling
process. In the raster scan and similar techniques, the scanned
area data is revealed at the highest resolution, while the rest
of the image remains completely unknown. The natural aug-
mentation of the raster scan for progressive sampling purposes
would be to sample the image on a series of rectangular grids
with increasing resolution. The sample distribution obtained
in the latter case after each stage is uniform, but the regularity
of the grid usually yields annoying aliasing effects, especially
at the first stages.

Aliasing is inherent in regular subsampling, unless the
image is lowpass filtered to the appropriate bandwidth before
it is sampled. For many applications such prefiltering is
not feasible, and therefore irregular sampling is sometimes
adopted. Note that a sampling pattern may be irregular and
yet be uniform. Uniformity merely means that the sample
density is approximately constant, thus providing an equal
amount of information about every part of the image. Several
works suggest to use stochastic sample distributions in order
to break the pattern’s regularity and avoid aliasing [6], [8],
[15]. A more detailed description of this approach can be
found in Section V. Unfortunately, the stochastic distribution
that exhibits the best anti-aliasing properties—the Poisson
disk distribution—cannot be easily fitted into a progressive
sampling framework, since there is no obvious way to add
points to the low resolution sample pattern and still retain the
same spatial distribution. In this context we should mention
the uniformly distributed deterministically generated indices
(UDDI) scan, suggested in [9], [11], which is a pseudorandom
space filling scan along congruent lines, resulting in a fairly
uniform sample distribution after each stage.

We propose here a progressive sampling algorithm, called
farthest point sampling(FPS), designed to provide a truly
dynamic resolution. The main idea is to add one sample
point at a time, and to place it in the middle of the least-
known image area. The nonadaptive version of the algorithm
generates an infinite sequence of uniformly distributed sample
points. All the sample sets extracted from this sequence, at any
size, comply with the same deterministic uniformity criterion.
The uniformity of this irregular pattern leads to both high
data acquisition rate and excellent anti-aliasing properties. An
efficient algorithm for FPS implementation is also suggested,
making it feasible and attractive for various applications.

Uniform distribution of the sample points seems to be
the besta priori strategy, yet it is always suboptimal, since
image data statistics are not stationary. A more sophisticated
approach is to extract from the current sample set some
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Fig. 1. Occluded point situation:IL(p) depends on the image values at
s1; s2, and s4, but not onI(s3), sinces3 is occluded bys2. In the 1-D
case, all sample points are colinear, hence the image interpolation over each
unsampled segment is determined by the sample values at the segment’s ends.

information about the image structure and adapt the sample
density at each region to the local information content. Adap-
tive sampling can be introduced within the framework of the
FPS by a minor change of the algorithm, yielding enhanced
reconstruction with no additional computational cost.

II. THE FARTHEST POINT STRATEGY

All the progressive sampling methods mentioned above (ex-
cept UDDI) take the same coarse-to-fine approach—some kind
of uniform sampling is applied again and again in different
resolutions. This paper suggests a different concept—adding
one sample point at a time, with the key question being where
the next sample should be placed. If our goal is a good
reconstruction, the next sample location should be the one
that minimizes the expected overall reconstruction error. Let
us adopt a common stochastic model [17] and regard the image
as a sample function of a continuous 2-D stochastic process,
stationary in the wide sense, with correlation that depends
exponentially on the distance

(2.1)

Choosing the optimal linear estimator for the image inter-
polation, it is not difficult to show that the resulting mean
square error (MSE) after samples depends on the sample
locations, , and is [19]

(2.2)

where

and

for all

Therefore, theoptimal sampling strategyafter points
are sampled would be to choose theth sample so that (2.2)
is minimized. Note that the expected MSE does not depend
on the th sample value, but on its location only. This is a
direct result of the model’s stationarity—the desired sample
distribution is uniform, since the statistical properties of the
image are spatially constant.

Since minimizing (2.2) is a difficult task, apparently with
no analytic solution, let us first consider its one-dimensional

Fig. 2. Illustration of the relatively simple 1-D case: The expected recon-
struction error variance at every point before (top) and after (bottom) adding
a sample point atx = 48.

(1-D) counterpart. Consider a 1-D stochastic signal with
exponential correlation, defined over the line segment .
Let be a set of samples of this signal (for
simplicity, we assume that ). An important property
of the exponential correlation model is that the optimal linear
estimator is invariant to “occluded” sample points (see
Fig. 1 for illustration). This property facilitates a closed-form
analysis of the 1-D case, since every point is
occluded from all sample points except two. The expected
reconstruction error over the segment between two adjacent
sample points , denoted , depends therefore only
on its length . Applying (2.2) to this particular
case yields

(2.3)

It is evident that an additional sample point affects the
reconstruction error only in the segment which contains it (see
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Fig. 2). Adding at distance from reduces this error by

(2.4)

This function is minimal for , meaning that should
be placed at the middle of an unsampled segment. The decrease
of the total reconstruction error is a function of the segment’s
length , and is

(2.5)

This is a decreasing function of the segment’s length.
Hence, theoptimal sampling strategy for the 1-D caseshould
be as follows: Sample the image at the middle of the longest
unsampled line segment, i.e., at the point which is the farthest
from the current sample set.

Unfortunately, the 2-D problem cannot be reduced into such
a simple form and requires use of numerical minimization
techniques. Such an implementation of the optimal strategy is
not practical due to its high computational cost. An example of
the decrease in the overall reconstruction error, as a function
of the location of the next sample point, was calculated
using (2.2) and is illustrated in Fig. 3. One may observe
the rapid increase of this benefit measure as we move away
from the sample points, and that the influence of the distant
points seems to be quite small. Inspired by this observation,
we approximate the optimal 2-D strategy by augmenting the
solution derived for the 1-D case. We suggest the following
progressive sampling strategy, FPS.

Definition 2.1—Farthest Point Sampling:Given a sample
set of an image defined over a region

, the next sample should take place at the point, which is
the farthest from the previous samples, i.e.,

(2.6)

This principle can be interpreted geometrically as follows:
The next sample point is the center of the largest empty
circle that lies within the image boundaries. It seems that this
strategy should be effective for any 2-D data, characterized
by a correlation function that decreases with the distance. In
this case, the point farthest from the sample set is intuitively
the least known one. We have proved it rigorously for a
1-D signal with exponentially decreasing correlation. In the
following sections we examine the generated sampling pattern
and suggest an efficient algorithm for implementation of the
FPS.

III. T HE VORONOI DIAGRAM

The FPS strategy can be efficiently implemented through
incremental construction of a Voronoi diagram (VD). The VD
is a well known data structure in computational geometry,
widely utilized in the context of proximity problems. In this
section we briefly review some of the basic properties of

the VD. The discussion is confined to planar points and the
Euclidean distance between them, though the VD is well
defined for spaces of higher order and with any other metric
as well. The Delaunay triangulation (DT) is also reviewed as
an introduction to the next section.

Definition 3.2: Let be a planar set of
points. TheVoronoi cell of the point , is defined as
the set of all planar points that are closer tothan to any
other point in . The Voronoi cell is a convex (not necessarily
bounded) polygon with no more than sides. The partition
of the plane into Voronoi cells is called the VD of

. The cell’s boundaries are defined by the edges of the
diagram, and its corners are the diagram’s vertices (see Fig. 4).

Definition 3.3: Two points are neighboring
points if their Voronoi cells share a common edge.

We shall assume hereinafter that the pointsare in general
position, i.e., no four points lie on the same circle. Under this
assumption, the following properties hold.

1) Every Voronoi vertex is the intersection of exactly three
edges. This implies that every vertex is the
center of a circle passing through three points of.

2) For every Voronoi vertex the circle
does not contain any point of, except the three points
it passes through.

3) A Voronoi cell of a point is not bounded if and
only if the point resides on the boundary of the convex
hull of .

Further information regarding the VD may be found in [2]
and [20].

A. The Complexity of VD Construction

Since the problem of vector sorting can be reduced to VD
construction for an arbitrary point set, is a lower
bound for the worst case time complexity of the latter task.
Shamos [20] suggested a recursive split of, followed by a
merge of the two halves VD’s. This algorithm is optimal, but
very complex and difficult to implement.

An alternative approach is to build the VD incremen-
tally—starting with the VD of a small subset of (e.g.,
three points) and then adding the rest of the points, one at
a time, modifying the diagram at each step [5], [13]. The
modification stage starts by finding the nearest neighbor to
the new point in the current sample set, and then constructing
the Voronoi cell of the new point. These algorithms are simple,
but offer worst case complexity of , meaning that for
an arbitrary set of points they are suboptimal. On the other
hand, if the points are uniformly distributed (e.g., a sample of
a homogeneous Poisson point process), then the expected VD
construction time is [13]. We should point out that
the task of finding the nearest neighbor is the one yielding this
complexity, while the average time for VD update is constant.

B. The Delaunay Triangulation

A triangulation of a set of planar pointsis defined as a set
of nonintersecting line segments between the points, dividing
the convex hull of into triangles. A given set of points
may have many legal triangulations, but for most applications
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Fig. 3. Decrease in the overall reconstruction error, as a function of the location of the next sample point, computed over a sampled square surface.
The surface was sampled densely along its borders and at some other randomly selected points. The same function is described as a three-dimensional
(3-D) surface (top) and level-crossing curves (bottom). The dominance of the sampling points (which are indicated by�) in its close neighborhood
stands out, especially in the second description.

one usually prefers a triangulation which is the closest to an
equiangular one. One of the most common criteria is choosing
the triangulation in which the smallest angle is maximal (the
min-max angle criterion). A good survey of various min-max
criteria can be found in [3].

Let be a triangulation of . If for each triangle in
the inscribing circle contains no other point of(except the
three points that form the triangle), then is the Delaunay
triangulation, . If the above mentioned general position
assumption holds, then the DT exists and it is unique. Further-
more, Sibson [24] proved in 1978 that the DT is the optimal
triangulation according to the min-max angle criterion. The DT
also guarantees the smoothest piecewise linear approximation
for a given set of samples [22].

Property 2) of the VD implies a duality between the VD and
the DT, i.e. every vertex of the VD corresponds to a triangle
in the DT (see Fig. 5). Hence, building provides us
with an optimal (equiangular) triangulation of as well.

IV. THE FPS ALGORITHM AND PROPERTIES

The FPS, defined in Section II, requires at each stage to
find the image point that is the farthest from the current set of
sample points . This task may be executed efficiently using
the Voronoi diagram of , yielding a spatial distribution of the
generated sampling pattern, which is uniform in a deterministic
sense.
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Fig. 4. Voronoi diagram. Sample points are marked with�.

Fig. 5. Delaunay triangulation. Sample points are marked with� and the
dotted lines describe the corresponding Voronoi diagram.

Since our domain is finite, we consider a bounded Voronoi
cell associated with each sample point, defined as the con-
junction of the Voronoi cell with the image definition area.
The assembly of all the cells associated withmakes up its
bounded Voronoi diagram (BVD) , where

and are the sets of the diagram’s edges and vertices,
respectively. For simplicity, let us confine ourselves hereafter
to a rectangular image and assume that its corners are sampled.

Consequently, the image is segmented into convex,
nonoverlapping, and bounded polygons. Every bounded
Voronoi cell contains one sample point and all the image
points that are closer to it than to any other sample point,
implying the following relation between FPS and the VD.

Theorem 4.1:The point , which is the farthest from
the points of the sample set, lies at a vertex of the BVD of

(for the simple proof, see Appendix B.)
Let us now rephrase the FPS algorithm in terms of the BVD,

as follows.

1) Create an initial point set , consisting of the im-
age corners and an additional, randomly chosen point.
Calculate . .

2) Find the point , which is the farthest from the
set of sample points .

3) .
Calculate [5], [13].

.
4) If more samples are needed, go to 2). The exact stop-

ping rule depends on the application—theoretically, this
sampling process could go on indefinitely.

We are now in a position not only to prove that such an
implementation is efficient, but also to make some strong
claims about the distribution of the sample points. Consider
the BVD of the set of sample pointsgenerated by the above
described algorithm. Let denote the graph associated
with . Let indicate, for every vertex , the
distance of the vertex from the nearest sample point, and let

be the closest and farthest vertices to and from, as
follows:

Note that distances to are excluded from the definition of
and .

The following theorem introduces deterministic bounds on
the distance between sample points and for ratio between the
radii of the maximal empty circles associated with the set
of sample points. Note that all the theorems in this section
were derived for the specific case of a set of points that was
generated by the FPS algorithm. They do not hold for the
general case of an arbitrary sequence of planar points.

Theorem 4.2:

1) For every set of sample pointswhich was generated by
the algorithm, .

2) The distance between each pair of sample points
is at least .

3) The distance between neighboring sample points is no
more than .

(For proof, see Appendix B.)
Theorem 4.2 expresses the uniformity of the sampling

pattern generated by the algorithm. Its first and third parts
assure that there will not be any large gaps between the
samples, while the second one excludes the possibility of
local clustering of sample points. Note that this theorem
holds dynamically, i.e., the process may be stopped at any
time and will still yield uniformly distributed samples. This
deterministic sense of uniformity allows us to make the
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following claim, which is crucial for the analysis of the FPS
time complexity:

Theorem 4.3:The number of neighboring points (definition
3.3), for every sample point , is bounded (smaller than
24).
(For proof see Appendix B.)

A tighter bound on the number of neighboring points
is introduced in Appendix A; But the mere existence of
a constant bound (Theorem 4.3), regardless of its value,
is sufficient to determine the time complexity of the FPS
algorithm.

For this purpose, the above described FPS algorithm may be
divided into two tasks—incremental construction of
and finding the farthest Voronoi vertex at every iteration.
In the general context of arbitrary point sets,the incremental
construction of Voronoi diagram cannot be done at less than

time, as claimed by Gowdaet al. [12] and proved
in [10]. The algorithm consists of finding the sample point,
which is closest to the new one (for FPS series—one of the
corners of the dual Delaunay triangle) and then constructing
the bounded Voronoi cell of the new point, edge after edge.

The time complexity of the VD modification, after one point
was added, depends on the number of the edges of the Voronoi
cell associated with the new point, i.e., the number of its
neighboring points. In an arbitrary sequence there may be as
many as neighboring points, yielding complexity
for the whole process. On the other hand, the number of
neighboring points in an FPS sequence is bounded by a
constant value (Theorem A.2), reducing the time complexity
of each iteration to .

For efficient implementation of the farthest vertex search we
should maintain a balanced binary tree of pointers to the VD
vertices, sorted by the vertex distance from the closest sample
point. Maintenance of the tree takes time, yielding

time complexity for the whole FPS algorithm.
The existence of such an efficient algorithm should enable
integration of the FPS in practical applications.

V. THE ANTI-ALIASING PROPERTY OF THEFPS

The FPS was shown to generate a sequence of uniformly
distributed points at every stage, exhibiting high data acqui-
sition rate. In this section we show that the irregularity of
this pattern makes it particularly suitable for sampling images
designated for visual display.

Regular sampling (i.e., fixed intersample distance) of a
spatial signal corresponds to its duplication in the Fourier
space. If this signal is not bandlimited, or if it is sampled
below its Nyquist rate, the high-frequency components appear
at low frequencies and give rise to aliasing. Irregular sampling,
on the other hand, corresponds to convolution of the signal
with a wideband noise, which has a blurring effect. The
coherent duplication of the image in the frequency space yields
appearance of semantically significant structures that interfere
with its perception much more than noise of the same energy
[21].

For example, Fig. 6(a) depicts a densely sampled syn-
thetic image of concentric circles, thinning from the center

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Reconstructions of an image from various patterns of 4096 sampling
point. (a) Original image. (b) Square regular grid (PSNR = 6:49 db). (c)
Random (Poisson) distribution (PSNR = 4:78 db). (d) Jittered square grid
(PSNR = 5:21 db). (e) Poisson disk distribution (PSNR = 5:24 db).
(f) Farthest point sampling (PSNR = 5:38 db). Note that although the
signal-to-noise ratio is the highest for the regularly sampled image, its visual
appearance is the least faithful to the original (due to aliasing effects).

outwards—i.e. the regions near the image boundary contain
higher spatial frequencies. Fig. 6(b) is a zero-order hold re-
construction of this image, obtained from regular sampling on
a low-resolution square grid. The aliasing effect stands out,
in the form of jagged edges and imaginary circles that may
change the semantic interpretation of the image. Fig. 6(c)–(d)
depicts reconstructions from the same number of samples
placed irregularly. These subsampling methods introduced, in-
stead of false structures, wideband noise—amorphic distortion
that fades away the thinner circles but preserves the essential
pattern of the image.

Anti-aliasing using irregular sampling was mostly investi-
gated in the context of computer graphics. Crow [7] was the
first to note that several common defects at computer gener-
ated images, such as those shown in the previous example,
are caused by the well-known aliasing phenomena. Several
studies discussed the prevention of such defects by stochastic
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(a)

(b)

(c)

(d)

Fig. 7. Stochastic 2-D sampling patterns and their power spectra. (a) Ran-
dom (Poisson) distribution. (b) Jittered square grid. (c) Poisson disk distribu-
tion. (d) Sampling according to farthest point strategy.

distribution of the sample points [6], [8], [15]. The sampling
patterns that gave the most visually pleasing results were found
to have a “blue” spectrum: There was no power peak at any
nonzero frequency (no aliasing), and most of the noise power
was concentrated at the high-frequency range, to which the
human eye is less sensitive. (This criterion was also introduced
at halftoning context [25].) Previous studies focused on three
types of stochastic distributions, illustrated at Fig. 7(a)–(c).
All those distributions are isotropic, so their energy spectra
are radially symmetric and can be displayed as 1-D functions.

The use of Poisson (uniformly) distributed sample points is
not common, although it is very simple to generate. Its white

spectrum yields prominent, grainy noise, decreasing the visual
quality of the reconstructed image. The most popular sampling
pattern is generated by jitterring a regular (usually square) grid.
The spectral analysis exhibits fairly low power at low frequen-
cies, leading to a much better results than those achieved by
Poisson distribution. Nevertheless, the Poisson disk (PD) is
undoubtedly the most suitable distribution for image sampling;
the points are randomly distributed, provided that the distance
between each pair accedes a certain value (the disk diameter).
The spectrum of this sampling pattern is characterized by blue
noise—almost all of the power is distributed beyond a certain
threshold frequency. Generating a Poisson disk distributed set
of points is a task of extremely high complexity, which makes
it impractical for most applications.

The FPS properties seem to resemble PD constraints in
certain respects. The bounded ratio between and
guarantees a uniform distribution of the sample points, and
the random initialization yields irregularity. Indeed, the power
spectrum of the FPS pattern [see Fig. 7(d)] is similar to the
one shown at Fig. 7(c). It is radially symmetric (isotropic
distribution of the sample points) and most of the power
is spread beyond the threshold frequency, as a wideband
noise. This spectral character indicates that the pattern is
suitable for image sampling, as demonstrated in Fig. 6(f). The
reconstructed image matches the one obtained by PD sampling,
and outperforms the other methods, while its computational
cost is only slightly higher than that of the common Jitter
pattern. Another important advantage of the FPS, compared to
PD and Jitter, is the possibility to generate additional points
progressively, so there is no need to predetermine the required
number of samples.

VI. A DAPTIVE FPS

The above described FPS strategy was derived from a
stationary image model, leading to the same uniform sampling
pattern for every image. For natural images, however, high
sample density is needed in areas with finer details while the
smoother parts require much lower resolution. More efficient
sample distribution can thus be achieved by adopting a non-
stationary image model. The next sampling point at each stage
should be selected according to the current sample locations
and the estimated local bandwidth [16], [26], extracted from
the previous sample values.

The most natural augmentation to the FPS would be to
define a different metric over the image area, expressing
its estimated structure, and to choose the point which is
the farthest in this metric. This metric may be derived, for
example, from a nonstationary stochastic image model, so that
the distance between two points in a high variance region will
be greater than the one of an equidistance pair in a smoother
region. The main obstacle is that the VD is very difficult to
calculate in a non-Euclidean metric—it is well defined, but
its edges are not straight lines and finding the farthest point
is impractical. We shall therefore restrict ourselves to vertices
in the Euclidean VD, choosing at each stage the vertex that
maximizes aweighted distancefunction. This new priority
function should express both the vertex geometrical distance
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(a) (b)

(c) (d)

Fig. 8. Progressive construction of the adaptive FPS sampling pattern.
(a)–(d) shows the first 1024, 2048, 3072, and 4096 samples, respectively.

from the current sample set and the estimated local bandwidth.
We actually approximate the image to be stationary in a the
vertex neighborhood—a reasonable assumption for sample sets
that are not extremely sparse.

Let us approximate each image region to be a segment
of a bounded, bandlimited function. For such function, the
Bernstein inequality [1] holds, as follows:

(6.1)

with being the function’s bandwidth and —the bound
on its amplitude. Calculating the inverse functions to the
inequality found in [4], we derive an upper bound forbased
on two sample values. Let be the image values at
points and , , then

(6.2)

with

From this bound we derive the suggested weight function

(6.3)

Defining the vertex neighborhood as the closest three
sample points, and being the vertex distance from
the current sample set. Note that this is only an exam-
ple—choosing an appropriate weight function may depend
on the specific application, since it reflects somea priori
knowledge about the image. A more sophisticated approach
would have been to construct a time-varying distance function,

starting at the Euclidean distance and increasing the adaptivity
as the sample density grows.

Experimental results of the adaptive FPS using this function
are shown in Figs. 8 and 9. The sample distribution clearly
reflects the image structure—samples are denser at regions of
high variance (like contours). This weight function, (6.3), gives
a good balance between high resolution at areas of interest
and reasonable data acquisition over the rest of the image,
compared to other weight functions checked [10].

The images in Fig. 9 were all reconstructed from the cor-
responding sample sets by the same scheme—a weighted
average of the four nearest neighbors

(6.4)

where are the four sample points which are closest
to the center of the pixel . Since this scheme is not biased
toward any of the sampling methods, we believe that the results
faithfully reflect their relative differences. Detailed discussion
of methods for image reconstruction from irregularly spaced
samples is beyond the scope of this paper. Note, however,
that K-nearest-neighbors schemes can be implemented very
efficiently using the BVD of the sample points. It is evident
from Fig. 9 that replacing the Euclidean distance function with
the weighted one improves the appearance of the reconstructed
image, while preserving the low computational complexity of
the algorithm.

VII. SUMMARY AND DISCUSSION

According to the farthest point strategy proposed for pro-
gressive image sampling, the image should be sampled at each
stage at the point which is the farthest from all the previously
acquired sample points, i.e., in the center of the largest empty
circle.

This sampling strategy has the following attractive proper-
ties.

• The generated pattern of sample points is uniform in
the sense of having an upper bound on the ratio of
distances between the farthest and closest neighboring
points. This uniformity criterion is much stronger than
the statistical sense of uniformity suggested by previous
sampling schemes.

• The number of sample points and the local sampling den-
sity change continuously, avoiding the stepwise change
characteristic of common pyramidal structures. This im-
plies, among other advantages, that stopping the scan at
any arbitrary step always yields the most uniform pattern
for the given number of samples. This also stands in
contrast to schemes that rely on adaptive subdivision of
cells in coarse partitioning, in which the boundary of the
large cells are visible.

• The location of sample points is irregular and thus reduces
significantly the aliasing effects, implying that the result-
ing reconstruction from the sampled data is particularly
suitable for display. The sampling scheme possesses the
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(a) (b)

(c)

Fig. 9. Comparison of reconstructions from sets of 4096 samples with different distributions. (a)–(c): uniform regular sampling on a square grid
(PSNR = 18:84 db), uniform FPS (PSNR = 18:58 db) and adaptive FPS (PSNR = 18:08 db). Note again that thePSNR measure fails to reflect
the superior visual quality of the FPS-based reconstructions.

“blue noise” characteristic known to be optimal for image
display.

• The sampling strategy can be modified to adapt to the
content of the sampled image; e.g., more detailed image
segments can be sampled more densely. This adaptive
version is readily obtained by replacing the distance prior-
ity function, which is independent of the image, by some
image-dependent or task-dependent priority function.

• An efficient algorithm, based on the Voronoi
diagram corresponding to the sample set, is available for
implementing both the uniform and the adaptive scanning
processes.

• The pseudorandom sampling pattern is well defined once
the locations of the first few sample points are given (also
for the adaptive scheme!), allowing for efficient image
transmission. This causality feature enables incremental
BVD construction at the receiving site too. Transmitting
the location of the next sample points is redundant, since
their gray values contain this information implicitly.

The sampling scheme presented in this paper is readily
available for several applications. A promising direction is its
application to ray tracing, where the image of an synthetic

world is constructed from a model describing the displayed
objects, the light sources, etc. The expected luminance is
calculated at a set of sampling points, and the gray level of
each pixel is interpolated from the luminance values in its
neighborhood. Since evaluating the luminance at each sample
points is computationally expensive, the overall rendering time
depends heavily on the number of samples taken. Several
works suggested stochastic distribution of the sampling points,
reducing their number while retaining visual quality of the
reconstructed image [6], [8], [15]. The uniformity of the
FPS point sequence may allow great reduction of the size
of sample set, while the irregularity of the pattern prevents
aliasing effects. A parallel ray tracing system using the FPS
was already implemented and reported to yield good results,
as shown in Fig. 10 [18].

The proposed scheme is in particular attractive for applica-
tion in progressive transmission of images, which also benefits
from both the uniformity and the anti-aliasing properties.
Encoding the first few sample point locations, and sending
them before transmission of the gray-level information, is a
convenient way to encrypt the image (see also [23]). Finally,
the farthest point approach may find vast use in the context of
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(a) (b)

Fig. 10. Example of the application of the farthest point strategy to image
rendering by ray tracing [18]. (a) Locations of the first 10 000 sample points,
generated by the adaptive FPS scheme. (b) Reconstructed image.

intelligent vision systems [14]. By using a task-dependent pri-
ority function, one can control the scan to enable extraction of
specific semantic information, thus implementing a purposive
scan.

APPENDIX A
A TIGHTER CHARACTERIZATION OF THE FPS UNIFORMITY

The upper bound on the number of neighboring points,
which was introduced in Theorem 4.3, is very loose. In this
appendix we introduce a tighter bound on this number and
show that the size of the smallest angle in the corresponding
DT is also limited. These bounds hold for almost all the
points is the FPS sequence, characterizing its uniformity in
a deterministic sense.

Recalling the duality between and the Delaunay
triangulation , we can show that the smallest angle in
all triangles is bounded from below.

Theorem A.1:Let be the set of sample points generated
by the FPS algorithm. Let be the set of all the triangles
included in and corresponding to Voronoi vertices that
lie inside the image boundary. Then

(For proof, see Appendix B.)
The min-max criterion on the angles in a triangulation

roughly quantifies the resemblance of the triangles to equian-
gular ones. Theorem A.1 imposes a lower bound on this
measure of equiangularity, and also lets us introduce a tighter
bound on the number of neighboring points for samples that
are not too close to the image boundary:

Theorem A.2:For every sample point , the distance
of which from the image boundary is at least , the number
of neighboring points is no more than 14.
(For proof, see Appendix B.)

Note that due to boundary effects, the bounds introduced
in Theorems A.1 and A.2 do not apply to all sample points.
However, the fraction of samples that do not meet the the-
orem conditions decreases as the total number of samples is
increased.

APPENDIX B
THEOREM PROOFS

In this appendix, we prove all the FPS properties claimed
above. Note that these claims hold only for point sequences
that were generated by the FPS algorithm.

Proof of Theorem 4.1:Let us assume that the farthest point
lies insidea BVD cell, corresponding to a sampling point.

The line that starts at and passes throughintersects the cell
boundary at the point. Since the boundary is a convex and
closed polygon, cannot be between and , meaning that

, which contradicts the
fact that is the farthest point from . This yields that must
lie on a BVD cell boundary, and for geometrical reasons—at
one of its corners, which are BVD vertices.

Proof of Theorem 4.2:

1) The vertex corresponding to lies at the center of
a circle defined by three sample points —let us
assume without loss of generality that . Since

, then . According to the algorithm,
the image is sampled at the point which is the farthest
from any existing sample point, hence

(B.1)

where , the radius of the largest circle containing
no sample point of the first ones, is a monotonic
nondecreasing function, i.e., for any .
For we get

for all (B.2)

(B.3)

but , and then, by (B.1, B.2, B.3)

(B.4)

2) Let us assume without loss of generality that .
According to the algorithm lies at , i.e., there were
no sample points at distance from , and in particular

. In the proof of the previous theorem, we
showed that , hence .

3) Consider two neighboring sample points that
share the two BVD vertices . Since lies at equal
distance from and , a triangular inequality yields

; but by definition
, hence, .

Proof of Theorem 4.3:According to Theorem 4.2, 3), all
the neighboring sample points of lie inside a circle with
center at and radius. According to Theorem 4.3, the
distance between each pair is at least . The maximum
number of points that can be placed inside the circle following
this constraint is equal to the number of circles with radius

that can be placed inside a circle with radius .
It is easy to introduce a (loose) upper bound to this number
by the ratio of circle areas—hence, the number of neighboring
points (#NP) is bounded by
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Proof of Theorem A.1:Since the full proof of this theorem
[10] simple yet quite tedious, we confine ourselves to the
guidelines of the proof. Observing the angles between the three
sample points forming the minimal angle and the
corresponding VD vertex, we take advantage of the fact that

[Theorem 4.2, 2)] and, by trigonometric
arguments, show that

Proof of Theorem A.2:Let be any sample point and
mark its neighboring points so that (for
any ) and are neighboring points. For any
vertex that belongs to the BVD cell of
by the definition of , but is at least away from
the image boundary; hence, all these vertices lie within the
image boundary and the constraints of Theorem A.1 hold for
all the triangles . Let us denote the angle near
in each of them by , then 360 . On the other
hand, according to Theorem A.1, 25.66 for all —so
the number of neighboring points is bounded by
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