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Abstract- The discrete (finite) Gabor scheme is generalized 
by incorporating multiwindows. Two approaches are presented 
for the analysis of the multiwindow scheme: the signal domain 
approach and the Zak transform domain approach. Issues re- 
lated to undersampling, critical sampling, and oversampling are 
considered. The analysis is based on the concept of frames and 
on generalized (Moore-Penrose) inverses. The approach based 
on representing the frame operator as a matrix-valued function 
is far less demanding from a computational complexity viewpoint 
than a straightforward matrix algebra in various operations such 
as the computation of the dual frame. DFT-based algorithms, 
including complexity analysis, are presented for the calculation of 
the expansion coefficients and for the reconstruction of the signal 
in both signal and transform domains. The scheme is further 
generalized and incorporates kernels other than the complex 
exponential. Representations other than those based on the dual 
frame and nonrectangular sampling of the combined space are 
considered as well. An example that illustrates the advantages 
of the multiwindow scheme over the single-window scheme is 
presented. 

I. INTRODUCTION 

HE GABOR expansion [l] (or the short-time Fourier 
transform) was found to be very useful in various fields 

of physics and engineering for the purpose of signal and 
image processing and analysis. The continuous Gabor scheme 
was previously generalized to incorporate several window 
functions as well as kernels other than the complex exponential 
[2 ] .  In this paper, we examine the discrete-finite case of 
the multiwindow Gabor-type scheme and consider issues of 
interest only in the case of the discrete scheme (algorithms, 
complexity, etc.). Preliminary results were presented in [ 3 ] .  

Throughout the paper, we consider discrete-time signals 
that are L-periodic, that is, signals that satisfy f ( i  + L)  = 
f ( i ) ,  i E Z. For such signals, given two divisors M ,  N of L, 
i.e., L = N’M = M’N, where M ,  N ,  M’, N’ are all positive 
integers, we propose the following scheme of representation: 

R-1 M-1 N-1 

r=o m=O n=O 
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where for a set of R window functions { g T ( i ) } ,  we define 

gT,m,n(i)  = gT( i  - mN’) exp ( 2nz- ;) 
and z = fl. If R = 1, we obtain the known discrete single- 
window scheme [4]. For N = 1, we obtain a finite discrete 
version of multirate filter banks, where each window function 
corresponds to a different filter. Thus, (1) incorporates the 
Gabor scheme (single window) and multirate filter banks. 

Let d 6 R M N I L  be the sampling density of the discrete 
combined space (so-called phase space). We analyze the three 
categories: 

( 2 )  

A 

0 undersampling-d < 1, 
* critical sampling-d = 1, 
* oversampling-d > 1, 

and consider issues such as the frame property and algorithms 
for finding the expansion coefficients. 

The paper is organized as follows. In Section 11, we consider 
mathematical preliminaries such as frames, generalized in- 
verses, the Zak transform, and vector-valued functions. Section 
111 is devoted to general analysis of the properties of the 
sequence of representation functions {gT,m,n} .  Section IV 
presents algorithms for calculating the expansion 
and for the reconstruction of the signal and c 
ysis of these algorithms. Particular cases of 
schemes and nonrectangular sampling of the c 
are considered in Section V. Section VI presen 
of implementation. 

11. PRELIMINARIES 

A. Notations 

Lowercase boldfaced letters denote column vectors and 
vector-valued functions such as f ,  g ( i ) ,  respectively. Capital 
boldfaced letters denote matrices and matrix-valued functions 
such as X, G(i),  respectively. The notation (G)+ stands for 
the entries of the matrix G (similar notation for vectors as 
well). The entries always start from zero. We use 7 to denote 
the complex conjugate of f and f* to denote the complex 
conjugate transpose of a vector f (similarly for matrices). Z 
denotes the integers, and for a positive integer N ,  i E 8 
means i = 0,1 , ’  s . ,  N - 1. 

B. Frames [SI ,  [6] and Generalized Inverses 
Definition 1: A sequence {x,} in a Hilbert space H con- 

stitutes a frame if there exist numbers 0 < A < B < 00 such 
that for all f E H we have AlIf1l2 < C, I ( f , x ,  1’ 5 Bllf112 
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where (., .) denotes the inner product corresponding to the 
Hilbert space H .  

Definition 2: Given a frame {x,} in a Hilbert space H ,  the 
frame operator S is defined by Sf = C, (f,x,)x,. [Note A 

that (S f ,  f )  = En I(f7xn)l2.1 
Corollary I :  
1) {S-lx,} is a frame with bounds B-',A-' called the 

2) Every f E H can be represented by either the frame or 
dual frame of {xn}. 

the dual frame in the following manner: 

Unless the frame is a basis, the representation coefficients 
(f,S-'x,) are not unique. The choice of the dual frame for 
computing the representation coefficients yields the minimal 
energy solution of the representation coefficients [ 5 ] .  For a 
finite-dimensional Hilbert space (as is our case), this solution 
corresponds to the so-called generalized inverse, and the frame 
property and completeness are identical. Moreover, for finite- 
dimensional spaces, every sequence is a frame in its own 
span. 

Without loss of generality (in the context of finite dimen- 
sional spaces), consider the space of L-dimensional complex- 
valued vectors CL. In this case, the issue of frame expansion 
can be considered in the context of matrix algebra. Let the 
columns of the matrix X be the vectors of the finite set 
{z,}. ( X  is not necessarily a square matrix). The inner 
products of a given signal f ,  which is also a column vector 
and the set {z,}, can be expressed as a column vector X * f ,  
where * stands for the conjugate transpose. A signal comprised 
of a set of expansion coefficients given by the column vector 
c, and the expansion set {z,} is given by Xc.  Thus, the 
frame operator can be expressed as Sf = X X * f .  If {s,} 
constitutes a frame, the matrix XX* is nonsingular, and the 
matrix containing the vectors of the dual frame is given 
by ( X X * ) - l X .  The representation of f by means of the 
frame { s, }, where the expansion coefficients are calculated 
by means of the corresponding dual frame, is given by 

f = x[(xx*)-'x]*f. (3) 

The same representation can be achieved by utilizing the 
Moore-Penrose or generalized inverse of the matrix X ,  which 

least square solution of the equation X c  = f. Moreover, if 
X X *  is nonsingular, X t  = X * ( X X * ) - ' ,  which yields (3), 
and proves that the application of the dual frame is equivalent 
to utilizing the Moore-Penrose inverse. Furthermore, if X X *  
is singular, i.e., {s,} does not constitute a frame for C L ,  we 
can find the best approximation of the signal by means of the 
Moore-Penrose inverse. Since, in this case, {z,} constitutes 
a frame in its own span, the best approximation can also be 
found by means of the dual frame in the subspace spanned 
by {sn}, and the dual frame can be found utilizing the 
Moore-Penrose inverse of the frame operator. For general 
finite-dimensional spaces, these facts are summarized in the 
following Proposition [8], [9]. 

is denoted by X t [7]. In fact, c = X t f is the minimal norm 

Proposition 1: Let H be a finite dimensional Hilbert s ace, 
and let {x,} be some finite sequence in H .  Denote by S 7 the 
Moore-Penrose inverse of the frame operator S. 

{Stx,} is the dual frame of {x,} in the sub-space 
spanned by {z,}. 
For f E H ,  define f a p  = C, ( f ,  Stxn)x,. Then, 
I l f  - f a p l l  is minimal, and the expansion coefficients 
( f ,S tx , )  are of minimal norm. Moreover, f a p  = 

E, ( f ,  X,)StX,. 

C. The Finite Zuk Transform (FZT) 

defined by [lo], [11] 
The FZT of an L-periodic one-dimensional (1-D) signal is 

(2 ,  w) E z2 (4) 

where a ,  h are integers such that L = a,h. The FZT is a 
DIT-based transform and, therefore, can be realized using fast 
algorithms. The FZT satisfies the following properties 11 11: 

( Z a f ) ( i ,  2, + b )  = ( Z a f ) ( i ,  U) ( 5 )  

(Zaf ) ( i  + a, w) = exp ( 2 n z i ) ( Z a f ) ( i 7  w).  (6) 

Unless explicitly stated otherwise, we will use the FZT with 
a = N , b  = MI. We omit the superscript a and write 

Denote by Z2(;P/L) the Hilbert space of L-periodic square- 
(Z f ) ( i ,  U) A (Z" U). 

summable 1-D signals with the following inner product 
L-I  

(7) 
a=O 

where f , g E Z2(Z/L). The FZT (4) defines a unitary mapping 
of 12(Z/L) onto Z2(N x I&). The latter is a Hilbert space of 
square-summable two-dimensional (2-D) functions with the 
inner product 

N - 1  Mi-I 

1 "I i=o v=o 

As a consequence, we obtain the inner product preserving 
property ( f ,  g) = (Z f ,  Z g ) .  The inverse of the FZT is given 
by 

D. Vector-Valued Functions 
For the problem addressed in this paper, it is natural to de- 

fine vector-valued functions that express a sort of decimation. 
Given f E 12(Z/L), define a vector-valued function of size 
MI as 

(10) . T  f ( i )  = [ ( f )o ( i ) ,  . . ' 7 ( f )M/-l (%)l  
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where (f ) k (i) = f (2  + k N )  , k E K. Note that it is sufficient 
to consider only i E N .  The inner product in the domain of 
vector-valued functions can be expressed as 

N-1 

z = O  

Clearly, ( f , g )  = (f,9). 
For the analysis of the Gabor scheme in the case of 

oversampling, the concept of vector-valued functions is useful 
also in the ZT domain [ 121. A vector-valued function obtained 
using the piecewise Zak transform (PZT) was introduced for 
such an analysis. For the discrete scheme, L = MN‘ = NM‘. 
Let L / ( M N )  = p / q ,  where p ,  q are relatively prime integers; 
then, M’/p = M / q  is an integer. Based on the definition of 
the FZT, (4), we define the piecewise finite Zak transform 
(PFZT) [3] as a vector-valued function of size p - 

f(i> U) = [ ( f ) o ( i ,  U), ’ . . , ( f ) p - l ( i ,  4IT (1 1) 

where 

Note that it is sufficient to consider z E iV, w E M’/p. The 
vector-valued function j ( i .  w )  belongs to a Hilbert space of 
vector-valued functions with the inner product 

___ 

Thus, here too, we obtain the inner product-preserving prop- 
erty ( f , g )  = ( Z f , Z g )  = (f,9). 

111. GENERAL ANALYSIS OF THE MULTIWINDOW SCHEME 

The properties of the discrete multiwindow Gabor-type 
scheme are analyzed in two parallel domains: One is the 
signal domain, and the other one is the transform domain 
(FZT domain). 

A. The Frame Operator 

{g,,,,n}, we examine the operator 
In order to characterize the frame properties of the sequence 

R-1 M-1 N-1 

r=O m=O n=O 

If the sequence {gr ,m,n}  constitutes a frame, thls is clearly 
the frame operator. The action of the frame operator in the 
signal domain can be expressed in terms of matrix algebra as 
(Appendix A): 

(Sf)(i) = S(i)f(Z), i E rv (15) 

where S( i )  is a M’ x M’ matrix-valued function with elements 
given by 

R-1 M-1 

and f(i) is a vector-valued function of size M’, which is 
defined by (10). The matrix S( i )  is self-adjoint and positive 
semi-definite for each i since by defining an RM x M’ 
matrix-valued function G(z) 

GO ( i )  

G(i)  = [ i ) (17) 
GR-l(i) 

where each GT(i)  is a matrix-valued function of size M x M’ 
with elements 

(GT)m,l( i )  = g T ( i  + IN - mN’) 

we obtain 

S( i )  = NG*(i)G(i). (18) 

Note that S(i+N’) = S( i ) ,  i.e., the entries of S( i )  are periodic 
with period N’ when considering i E Z. 

The action of the frame operator in the PFZT domain can 
be expressed as (Appendix B) 

( S f ) ( i , v )  = S ( i , v ) f ( i , u ) ,  i E N ,  ‘U E - M’/p (19) 

where S(i, U) is a p x p matrix-valued function with elements 
given by 

. (Zg?.)(2 - IN’, w + jM’ /p )  (20) 

and f ( t , u )  is a vector-valued function of size p ,  which is 
defined by (11). As in the signal domain, the matrix S( i ,  w )  is 
self-adjoint and positive semi-definite for each (i, w) since by 
defining a Rq x p matrix-valued function G(i, U) 

G O ( i ,  U) 

G ( i , v )  = (- i ) (21) 
GR-l(i,w) 

where each G r ( z )  is a matrix-valued function of size q x p 
with elements 

( G p ) i , j ( i ,  U) = ( z g T ) ( i  - IN’,w + j M ’ / p )  

we obtain 

(22) 

Note that S(i  + N’, w) = S( i ,  w), i.e., in the transform domain 

N - *  
P 

S( i ,  a )  = --G (i, a)C(i, .) 

as well, the matrix S(i ,  w) is periodic. 

B. Frame Bounds and Properties 

Based on the representation of the frame operator presented 
in Section 111-A, we present some results for the discrete 
multiwindow Gabor-type scheme, which are particular cases 
of some known facts about frame operators [13]. Note that 
the sequence {gT,m,n}  constitutes a frame if and only if A > 0 
(since in this case, B < 00 always). 
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It is shown in Appendix C that the frame bounds A,  B can we have 
be derived by calculating the eigenvalues of the matrix-valued R- 1 
function S(i) ,  i.e., 

A = min Xj(S)(i) 
i E l v , j E I M '  

0 

For maximal oversampling rate, M = N = L,S( i )  is 

MN R-l B = max A,(S)(i) (24) 
11gT112' 

aEN,j A=----- 
r=O 

L where A, (S) ( i )  are the eigenvalues of the matrix S(i) .  Simi- 
larly, we obtain in the transform domain 

scalar-valued and, based on (15) and (16), we have 
R-1 

A =  min A, ( S ) ( i ,  v )  (25) 

B= max A,(S)(~, w) (26) 

z"€M'lp, ,Ep 

t E N , V E M ' I p , J E p _  
(Sf)(%) = f ( i )L  119r1I2 

r=O 

where A j ( S )  ( i ,  U) are the eigenvalues of the matrix S(i,  w).  
The ratio B/A, which is the so-called condition number, 
expresses the stability of the representation. Maximum stability 
is achieved when B / A  = 1. 

The following theorem [8], [9] considers the frame property 
of the sequence {gT,m,,} without explicitly calculating the 
frame bounds A,  B. It is useful only in the cases of critical 
sampling and oversampling since in the case of undersampling 
the sequence, {gr,m,,} is always incomplete. 

Theorem 1: Given gr E 12(Z/L),  T E I?, and a matrix- 
valued function S( i )  as in (16) [or S ( i ,  w) as in (20)], the 
sequence {gT,m,,} associated with {gr} constitutes a frame if 
and only if det (S)( i )  # 0 for all i E N (or det (S ) ( i ,  w) # 0 
for all i E N,w E M'/p). 

A frame { $,} in a Hilbert space is called a tight frame if 
A = B. The frame operator for tight frames S = AZ, where Z 
is the identity operator, lends itself to the simple reconstruction 
formula for each f E H : f  = A-' C, (f,$,)$,. The 
following theorem considers tight frames and the matrix 
representation of the frame operator. 

Theorem 2: Given gr E 12(Z/L), T E & and a matrix- 
valued function S( i )  as in (16) [or S ( i , v )  as in (ZO)], the 
sequence {gr,m,n} associated with {gT} constitutes a tight 
frame if and only if S( i )  = AI (or S ( i ,  w) = AI),  where 
I is the identity matrix, and A = ( M N / L )  C F i t  I lgr I 1 2 .  

Proofi For tight frames, the frame operator is S = AZ. 
In the domain of vector-valued functions, this is clearly 
equivalent to S( i )  = AI (or S ( i ,  v )  = AI) .  To calculate the 
frame bound, we write this condition explicitly 

- 

R-1 M-1 

r = O  m=O 

where i E IV, I C ,  1 E kJ, and 6, denotes the Kronecker delta 
function. In particular, we have ( I C  = 1 = 0) 

Since 

M-1"-1 

119r1I2 = Igr(i - "')I2 
m=O i =O 

i.e., the sequence {gr,m,,} is always a tight frame (for any set 
of window functions) with the bounds 

R-1 

T=O 

(the so-called resolution of identity [3]). 
If {xn} constitutes a frame, then {S-1/2x,} constitutes a 

tight frame with A = 1 [14]. This fact can be utilized for 
the construction of tight frames of the form {S-1/2gr,m,,}. 
Moreover, let h, -= S-1/2g,. It can then be shown that 
S-1/2gr,m,, = h,,,,, i.e., the tight frame is generated by the 
R window functions h,(i) (see [14, prop. 4.61 for the single 
window continuous-time case and [15, sec. 2.81 for the single 
window discrete-time case). Clearly, h, (x) can be found by 
utilizing ~ - ' / ~ ( i )  (or s - -1/2 

(i, w)). 

C. The Dual Frame 

According to Corollary 1, if the sequence {gr,m,n} consti- 
tutes a frame, the expansion coefficients as in (l), can 
be calculated by means of the dual frame. Let { Y ~ , ~ , , }  denote 
the dual frame of {gT,m,,} in 12(Z/L). It can be shown [8], [9] 
that the structure of the dual frame is identical to that of the 
frame {gT,m,n}, i.e., it is generated by R window functions 
744 

~ , . , ~ , ~ ( i )  = rr(i - mN') exp 2 ~ 2 -  . (27) 

In fact, 7, = S-lg, and, in the signal domain of vector- 
valued functions, the R dual frame window functions can be 
calculated by the inverse of the matrix S( i )  

( Ivn) 

T T ( i )  = s-l(2)gT(i).  (28) 

Note that S-' (i) is in fact the inverse of the M' x M' matrix 
S( i )  for each i E N, where i is a parameter. Alternatively, 
the R windows of the dual frame can be calculated in the 
transform domain by the inverse of the matrix S( i ,  U )  

--1 , 

where +r(i, w ) , g r ( i ,  U )  are the PFZT of r r ( i ) ,gr( i ) .  Note that 
an explicit solution by means of the elements of S(i)  [or 
S ( i ,  U)] can be found for any given M' (or p) .  (See [I61 for 
an example of p = 2 in the transform domain.) 

M i ,  U) = s (2, v)Gr(i, U) (29) 
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In the case of critical sampling, the matrix-valued function 
G ( i )  [or G ( t , w ) ]  is a square matrix. Therefore, S- ' ( i )  = 
( l /N)G- ' ( i )G- '*( i ) .  Since G ( i )  can be constructed by uti- 
lizing the vector-valued functions g, ( i )  

9:: (4 

g;( i  - (M - 1)") 
GT( i )  = 

where r E R, and G(2) as in (17), we obtain for the dual 
frame window functions 

(G-1)0,TM(2) 

(G- ' ) M ' - l , r M  (2)  

%(i) = ( I ) .  (31) 

That is, rr (2)  is equal to the appropriate column (the rMth col- 
umn) of the matrix-valued function (1IN)G-l (i). Similarly, 
in the transform domain, 'U,(%) is equal to the appropri- 
ate column (the rqth column) of the matrix-valued function 
(p/N)G-' ( i ,  w). 

1) Complexity Analysis: Although the windows of the dual 
frame are usually calculated off-line (and only once), it is 
interesting to compare the various techniques for this calcu- 
lation. Such a comparison could be useful when an adaptive 
scheme is utilized, where the window functions and, hence, the 
dual frame window functions, are not known. Our comparison 
is based on counting the number of complex multiplications, 
which is of the order of the number of flops, for the calculation 
of the R dual frame window functions. We are not interested in 
the exact number of computations but in the order of number 
of computations. Therefore, we assume that L3 complex 
multiplications are needed in order to invert a complex square 
matrix of size L (indeed, it takes O(L3)  to invert such a matrix 

First, we consider the direct approach as presented in Sec- 
tion II-B. By this approach, we should calculate (XX*)- ' zT ,  
where X is an L x R M N  matrix that has the sequence 
{gr ,m,n}  as its columns, and z, are column vectors of size L, 
which correspond to the set { g r } ,  r E B. The calculation of 
XX* entails L2 R M N  complex multiplications, the inversion 
of the resulting matrix requires L3 complex multiplications, 
and the additional matrix-vector multiplications take RL2 
complex multiplications. Utilizing d = R M N / L  = R q / p ,  the 
total number of complex multiplications is L3 (dR+ 1 + R/ L) .  
As L grows, this algorithm approaches 0 ( L 3 )  

Second, we consider the signal domain approach as given 
by (28). Calculating the entries of S(z), i E N, as given 
by (IS), entails MI2 R M N  complex multiplications, inverting 
the resulting matrix-valued function requires M'3 N complex 
multiplications, and the final matrix-vector multiplications 
takes RM'2 N complex multiplications. Utilizing the notation 
M' = L", where 0 5 a 5 1, the total number of complex 
multiplications is L1+'"(d + 1 + RL-"). As L grows, this 
algorithm requires O( L1+2") multiplications. 

Finally, we consider the transform domain approach as 
given by (29). We assume that there is no need to calculate 
the inverse FZT of the dual frame window functions since, 

~171). 

as we shall see later, the calculations of the expansion co- 
efficients can be done in the transform domain. Calculating 
the number of complex multiplications in a way similar to 
the one presented for the signal domain, the total number of 
complex multiplications is pRqL +p2L + RpL, which is equal 
to p 2  L( d + 1 + R/p) . Assuming that p does not depend on L, 
as L grows, the complexity of this algorithm becomes O ( L ) .  

In summary, for large values of L, the transform domain 
approach is far less demanding than the other two approaches. 
Note, however, that if the window functions are all real-valued 
(which is so in practice), the signal domain approach requires 
only real operations, which is not true for the transform 
domain approach. In addition, note that in the case of critical 
sampling, calculating the dual frame window functions based 
on ( l /N)G- ' ( z )  or (p/N)G- ' ( i ,  w) does not change the order 
of computation complexity. 

D. Generalized Inverse and Undersampling 

Recall that by utilizing the Moore-Penro 
inverse, we obtain the minimal norm least square solution to 
a representation problem in finite-dimensional spaces. In our 
case, if {gT,m,n} does not constitute a frame, 
Moore-Penrose inverse in 
coefficients for which exp 
approximation of a given signal. As noted, the 
can be found by means of the Moore-Penrose in 
frame operator 

Cr,m,n = ( f ,  s+gr,m,n).  

The structure of the sequence {StgT,m,n}, which 
frame of {g,,m,,} in its own span, is, as expected, identical 
to the structure of {gT,m,n}.  That is, let y 
then, (27) holds, where yr t g T .  Moreover, the calculation 
of y, can be made simil o (28), where S-I ( i )  should 
be replaced by St(%), or, ( 2 , ~ )  

should be replaced by §+ (i, U). Furthermore, let r(z) (f'(%, w ) )  
be a matrix-valued function associated with the set {yr} in 
the same manner as G(i )  (G(i, w ) )  is associated with the set 
{g,). Based on the previous results and on the structure of 
these matrix-valued functions, we have r*(i) = St ( i )G*( i ) .  
Since Gt = (G*G)tG* [7, Theorem 1.2.11, this implies 

- - 1  , 

y, to (29), where S 

r*(i) = ;i,G t .  (2) (32) 

or, in the transform domain 

(33) 

Equations (32) and (33) present an algorithm, which can be 
applied in allpossible cases, for finding the dual frame window 
functions in the subspace spanned by the {gr,m,n}.  

As indicated by Theorem 1, the frame property of the 
sequence {gr,m,n} can be determined by examining det (S)( i )  
(or det ( S ) ( z ,  U)). If the sequence {gT,m,n} does not constitute 
a frame, the dimension of the space spanned by the sequence 
{gr,m,n} can be calculated by examining the matrix-valued 
function G(c) [or G(i ,  w ) ] ,  as shown in the following theorem. 
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Theorem 3: Given gr E 12(Z/L) ,  r E &, and a matrix- 
valued function G(i) as in (17) [or G ( i , v )  as in (21)], the 
dimension of the space spanned by the sequence {gr,m,n} 
associated with { g r }  is equal to rank (G)(i) [or to 
L o  N-l %=o M''p-l rank (G)( i ,  U ) ] .  

Recall that the dimension of a space is the minimum number 
of representation functions (vectors) required to span the space. 

Proof: One can easily verify that span {gr,m,n} = R(S),  
where S is the frame operator, and R(S)  is the range (image) 
of S.  Clearly, the dimension of R(S) can be calculated in the 
signal domain of vector-valued functions. Since in the signal 
domain of vector-valued functions the representation of the 
frame operator is given by the matrix-valued function S(i) ,  
which can be represented as in (IS), the result in the signal 
domain follows from matrix algebra considerations. Simi- 
larly, based on (22), the result follows also in the transform 
domain. 0 

As a matter of fact, in the cases of critical sampling and 
oversampling, we would like to design the sequence {gr,m,n},  
i.e., choose the window functions gr such that the sequence 
constitutes a frame (or a basis) and the reconstruction are 
perfect. In the case of undersampling, we have no other 
choice but to utilize the Moore-Penrose inverse in order to 
get the reconstruction error as small as possible. Moreover, 
given an undersampling scheme, we would like the {gr,m,n} 
to constitute a basis of a subspace of Z2(Z/L), i.e., choose 
the window functions gr such that the gr,m,n are linearly 
independent. This basis property is examined in the next 
theorem through the introduction of the following matrix- 
valued functions: 

P(i )  = NG(i)G* (i) (34) 

where G ( i )  is as in (17), and 

N - .  P(i ,  U) = -G(z, u)G*(Z, v) 
P 

(35) 

where G ( i , v )  is as in (21). 
Theorem 4: Given gr E Z2(Z/L), r E & and a matrix- 

valued function P( i )  as in (34) [or p ( i , v )  as in (35)], in 
the case of undersampling, the sequence {gr,m,n} associated 
with {gr} constitutes a basis for a subspace of 12(72/L) if and 
only if det ( P ) ( i )  # 0 for all i E N [or det (P)( i ,  U) # 0 for 
all i E N,v E M'lp].  

Proof: In the case of undersampling, the sequence 
{gr,m,n} constitutes a basis of its own span, if and only 
if the dimension of the space spanned by the sequence 
{gr,m,n} is equal to the number of representation functions 
in the sequence, i.e., to R N M .  Recall that G(i) is of size 
R M  x M' [and G ( i , v )  is of size Rq x p ]  and that in the 
case of undersampling, M' > R M  ( p  > Rq). Therefore, based 
on Theorem 3 and (34) [or (35)], the dimension of the space 
spanned by the sequence {gT,m,7L} is equal to R N M  if and 
only if P(i )  [or P ( ~ , u ) ]  is of full rank for each i [or each 

Note that in case {gr,m,ll} constitutes a basis in its own 
span, we have the following formulae for the calculation of 

__ 

( i ,  .)I. 0 

the Moore-Penrose inverse [7, Th. 1.3.21 

st(i) = NG* (i)p-l ( i p - l  ( i ) ~ ( i )  

and 
- t  N - *  
S ( i , v )  = -G ( i , v ) P - ' ( i , v ) p - ' ( ~ , v ) G ( i , ~ ) .  (36) 

Moreover, since G(i)  can be constructed by utilizing the 
vector-valued functions g r ( i )  as in (30), each dual frame 
(basis) window function 7,(i) is equal to the appropriate 
column (the rMth column) of the matrix-valued function 
G*(i )P- ' ( i ) .  Similarly, in the transform domain, ?,(i) is 
equal to the appropriate column (the rqth column) of the 
matrix-valued function G* ( i  , v ) P  

The case where {gr,m,n} constitutes an orthonormal basis in 
its own span can be characterized also by utilizing the matrix- 
valued functions P ( i ) ,  P(i,  v). The following theorem, which 
is proved in Appendix D, presents such a characterization. 

Theorem 5: Given gr E 12(Z/L) ,  r E & and a matrix- 
valued function P( i )  as in (34) [or P(i,w) as in (35)], in 
the case of undersampling, the sequence {gr ,m,n}  associated 
with { g r }  constitutes an orthononnal basis for a subspace of 
12(Z/L) if and only if P( i )  = I [or k(i, w) = I], where I 
is the identity matrix. 

P 

--1 , 

(z , U ) .  

E. Representations Other Than the Dual Frame 
In the case of oversampling, the expansion coefficients are 

not unique. As noted, the dual frame provides the coeffi- 
cients that are of minimal energy in the l 2  sense. We can 
find, however, different coefficients that still satisfy (1) by 
calculating the inner products of the signal with sequences 
{ T ~ , ~ , ~ }  generated by different dual window functions that 
are not the dual frame window functions. (See [4] and [lS] 
for an example in the single-window case.) 

Let { y r }  be some given set of R functions. Compute 
R-1 M-1 N-1 

r = O  m=O n=O 

where f ( i )  is some given signal. Based on Appendices A and 
B, with some minor changes, we obtain, in the domain of 
vector-valued functions 

h(i)  = N G * ( i ) r ( i ) f ( i )  (37) 

or in the transform domain 

(38) 

Theorem 6: Let {gr}, {yr} be two given sets of R functions 

N - *  
P 

k( i ,  U) = -G ( i , u ) f ' ( i ,  ~ ) j ( i ,  U). 

each. Then 
R-1 M-1 N-1 

r = O  m=O n=O 

for all f E Z2(Z/L)z if and only if 

N G * ( i ) r ( i )  = I ,  
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The proof follows (37), (38) (see [19] for the case of a single 
window). Note that a necessary condition to satisfy (40) is that 
both {gr ,m,T(}  and {T~,~,,} constitute frames (not necessarily 
the dual frame of each other) since both G(i) ,  I'(i) should be 
of full rank for each i [20]. 

Given a sequence {gr,m,n} that constitutes a frame, i.e., 
G(i) is of full rank for each i ,  one of the possible solutions 
for r(z) that satisfy (40) is the Moore-Penrose inverse of 
NG* (2). Clearly, this solution corresponds to the dual frame 
of {gr,m,,>. It is well known that the Moore-Penrose inverse 
is of minimal Frobenius norm among all possible solutions. 
This implies that the sum 

R-1 M-1 M'-1 

IrT(i + l N  - mN')(' 
r=o m=O I=O 

attains its minimum for each i if { T ~ , ~ , ~ }  is the dual frame of 
{gT,m,n} .  Therefore, among all possible sets {yr} that satisfy 
(39), the window functions of the dual frame are of minimal 
norm. (See [15], [21], [22] for the case of a single window.) 

F. Representation Functions with Nonexponential Kemels 
The representation functions {gT,m,T(} defined by (2) are 

constructed by utilizing the complex exponential kernel. This 
kernel is not the most suitable for all possible applications. 
For example, for data compression purposes, the cosine kernel 
might be more attractive. We therefore present and analyze a 
scheme with kernels that are not necessarily exponential. The 
case of a continuous-time single-window scheme with critical 
sampling was introduced in [23]. 

A general expansion scheme without necessarily having an 
exponential kernel is based on (l), with the sequence {gT,m,n} 
replaced by the sequence {g$,m,n} 

(41) 4 

Each of the functions &(z) is N periodic, and the sequence 
{(l/n)&} constitutes an orthonormal basis for 12(Z/N).  
Note that (without loss of generality) we multiply &(i) by 
l/a, although we can multiply by any other constant. 

This generalization does not change the frame properties of 
the sequence as shown by the following theorem. 

Theorem 7: Let the sequence {(l/~%)&}zZ; be an N- 
periodic orthonormal basis for Z 2  ( Z / N ) .  Then, the sequence 
{gT,m,12} as in (2) and the sequence {g$,m,n} as in (41) have 
the same frame operator S. 

Proof Since q5n(z )  are N periodic, in the signal domain 
of vector-valued functions, we have 

gr,m,n(z) = gT(i - "')&(i). 

(g : ,m ,n )k (4  = g&7%,& + k N )  
=gT( i  + kN - mN')&(i).  (42) 

Examining the derivation of the matrix-valued function S( i )  as 
given in Appendix A, based on (42), it is easily seen that one 
gets the same matrix S( i )  if {exp (2nz(in/N))} is replaced 

Note that the operator S is the same for the two sequences, 

As a consequence of Theorem 7, we obtain the following 

by {+?l(i) 1. 0 

even when {gr,m,T(} does not constitute a frame. 

corollary. 

Corollary 2: Let the seq 
the sequence { g t m , n }  be as 
constitutes an orthonormal basis for l 2  @IN) .  

ce {gT,m,n} be as in (2) and 
41), where { ( l / f i ) & } ~ ~ ~  

1) The sequence {gT,m,n} is a frame/a tight frame/a ba- 
sis/an orthonormal basis if and only if the same i 
for the sequence {g$,m,,}. 

a frame with the same frame bounds. 

Then, the dual frame is gen 
'yr = s-lg,, i.e., ~ $ , ~ , , ( i )  = 

2) If {gT,m,n} constitutes a frame, the 

3) Let {g$,m,,} be a frame with the dual frame { ~ r " , ~ , , } .  
by the R functions 

Proof The proof of 1) and 2) is obvious based on the 
matrix representation of the frame operator. The proof of 3) 

0 is similar to the proof of (27). 

IV. ALGORITHMS 

The analysis and synthesis of a signal can be 
the signal or the transform domains. Efficient 
synthesis algorithms in the transform domain w 
for a single window and critical s 
were generalized for the case of 

number of complex multiplications and 
or 2-D DFT of a signal of size L require 
multiplications. (For complexity analy 
sampling and a single window, see [2 

A. Calculating the Expansion Coefjci 

In order to evaluate the complexity, we count only 

The expansion coefficients are found by 

(43) - 
CT-,m,n - ( f , r r , m , n )  = (Zf,=Yr,m,,). 

In the signal domain of vector-valued functions, we have 

1 

(44) 

which yields the following DFT-based algorithm for calculat- 
ing the expansion coefficients: 

1) Precompute the dual frame window functions rT( i ) .  
2) For each r E l?,m E Ad, execute the following 

computations: 

a) For i E E, compute h(i) = CEilf(i + 
kN)y , ( i  + kN - m N / ) .  

b) Compute a 1-D DFT of length N of h(i) .  

3) End. 
Without counting the stage of precomputing the dual frame 
window functions, the number of complex multiplications 
is RMN(M'  + log, N ) .  Note that If M >> 
algorithm can be utilized in the Fourier do 
considering a 1-D DFT of size L of the functions gr ,m,n( i ) .  
This, in fact, will exchange the roles of N ,  M and the roles of 
N' ,  M' in the complexity computation in addition to a DFT 
of size L of the signal. 
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In the transform domain, since 

( zTr ,m ,n ) ( i ,  U) = ( Z y r ) ( i  - mN’, w) exp 2 ~ 2 -  ( 5 )  
we obtain 

~ N-1 MI-1 

. (Zyr) ( imN‘ ,  U )  exp 

For 

m = m’q + k ,  k E 2, m’ E - M’/p, (M’/p = M / q )  

by reordering 

v = w’ + jM‘/p,  v‘ E - M‘/p, j E 1) 

(45) can be rewritten as 

which yields the following DFT-based algorithm for calculat- 
ing the expansion coefficients: 

1) Precompute the FZT of the dual frame window functions 

2) Compute the FZT of the signal ( Z f ) ( i ,  U). 
3) For each T E R, k E - q, execute the following steps: 

(27,) (i, v) a 

a) For i E N,v E M’/p, compute - 

b) Compute a 2-D DFT of size N x M’/p of h(i, v). 

4) End. 
Considering the DFT nature of the FZT, the number of com- 
plex multiplications needed in order to calculate (Zf)( i ,  v) is 
NM’ log, M’. Therefore, without counting the stage of pre- 
computing the dual frame window functions, the total number 
of complex multiplications is NM’log, M’ + Rq(NM’ + 
NM’/plog, (NM’Ip) ) ,  which is also equal to L log, M’ + 

The transform domain algorithm is, in fact, a simple gener- 
alization of the algorithm presented in [3]. Utilizing Z”,  we 
present in [8] and [9] another dual algorithm in the transform 
domain. The complexity of the dual algorithm is essentially 
the same. 

R M N ( p  - log, P + log, L ) .  

B. Reconstructing the Signal (Synthesis) 

The reconstruction of the function from its expansion co- 
efficients is given by (1). In the domain of vector-valued 
functions, after rearranging the order of summation, we obtain 

r=O m=O n=O 

(47) 

which yields the following DFT-based reconstruction algo- 
rithm: 

1) For T E &,m E Ad, compute a 1-D DFT of length N 

2) For k E AP, i E iV, compute gr(i + kN - 
of cr,m,n. 

”’) DFT [c,,m,n]. 
The number of complex multiplications is 

R M N  log, N + M‘RMN = RMN(M’ + log, N ) .  

In the transform domain, the reconstruction of the function 
is given by 

R-1 M-1 N-1 

r=O m=O n=O 

Introducing m’, k as in (46), for j E p ,  - we obtain 

which yields the following DFT-based reconstruction algo- 
rithm: 

1) Precompute the FZT of the window functions 

2)  For T E l2, k E q, compute a 2-D DFT of size N x M’/p 

3) For j E p ,  i E E, v E M‘/p, compute 

( Z g r ) ( i ,  U). 

- 

of Cr,m‘q+k,n. 

- - 

4) Compute the inverse FZT of ( Z f ) ( i ,  U). 
The number of complex multiplications is RqNM’/p log, 
(NM’/p)  + NM‘Rq + NM‘log,M’, which is equal to 
R M N ( p  - log, p +  log, L)  + L log, MI. In this case, as in the 
case of calculating the expansion coefficients, there exists also 
a dual algorithm (in the transform domain) that utilizes 2”. 
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C. Complexity Comparison 

Both analysis and synthesis algorithms require R M N (  M'+ 
log, N )  complex multiplications in the signal domain. In 
the transform domain, both algorithms require R M N ( p  - 
log, p + log, L )  + L log, M' complex multiplications. This 
can be compared with a straightforward computation of both 
analysis and synthesis, which requires R M N L  complex mul- 
tiplications. Clearly, in most practical cases, the proposed 
algorithms perform better than the straightforward calculation. 
We, therefore, compare only the signal and transform domain 
algorithms. 

Similarly to [24], we write M' = L" and N = LlPCu, 
where 0 5 a 5 1. Utilizing d = R N M / L  = Rq/p ,  the 
number of complex multiplications in the signal domain is 
dL(L" + (1 - a)  log, L )  and in the transform domain is 
d L ( p  - log, p + (a/d + 1) log, L ) .  In most practical cases, 
L is large, p is small, a z 0.5, and d is of an order of 
a unity. Therefore, roughly speaking, the transform domain 
algorithm outperforms that of the signal domain in most 
practical cases. Moreover, assuming that p does not depend 
on L as L grows, the transform domain algorithm achieves 
0 ( L  log, L )  , whereas the signal domain algorithm achieves 
only O(L1+") (assuming a # 0). For the single-window 
case and critical sampling, the fact that the transform domain 
algorithms achieve the efficiency of an FFT was pointed out 
in [24]. 

Clearly, there exists some particular cases where the signal 
domain algorithms perform better. For example, consider the 
case of critical sampling. In this case, d = 1, and p = R. 
Therefore, if the number of windows is small, the length of the 
signal is large, and QC M 0.5, the transform domain algorithm 
outperforms the signal domain algorithm. If the number of 
windows is large, the two algorithms are of similar complexity, 
and the specific values of the various parameters should be 
considered. 

V. EXAMPLES 

A. The Single-Window Scheme 
The discrete finite single-window scheme ( R  = 1) was 

presented in [4], although similar techniques (STFT) were used 
before [25]. Application of the FZT has been applied in the 
case of critical sampling [lo], [ l l] ,  and this was generalized 
to oversampling [ 3 ] .  

The representation scheme in the case of a single window is 
M-1 N-1 

m=O n=O 

where, for the window function g ( i ) ,  we define 

g m , n ( i )  = g ( i  - mN')  exp 27rz- , L = N'M.  (51) 

In the case of critical sampling ( L  = M N ) , S ( i , w )  = 
NIZg(i,  U) 1, is scalar valued. Therefore, there is an advan- 
tage in using the FZT. For example, { g m , n )  constitutes a 

( 3 

vanish, {gm,n}  constitutes an orthonormal basis if and only 
if N I 2 g ( i , ~ ) 1 ~  = 1 for all i E l V , w  E J4, and the dual 
frame window is given by (Zy)(i, w )  = ( N ( Z g ) ( i ,  w))-'. 
The computational complexity for calculating the expansion 
coefficients and for reconstructing the signal is the lowest 
one in the FZT domain, and it achieves the order of an FFT 
0(Llog, L )  [24]. 

One of the disadvantages of critical sampling is the insta- 
bility that may occur because of a zero of ( Z g )  (2, w) [26], [8]. 
One solution to this problem is a shift of the window within 
a subpixel distance [27]. Another is the application of the 
generalized inverse in order to calculate the best approximation 
of the signal by the elements of {gm,n} .  Since, in this 
case, S ( i , v )  = NIZg(i,w)I2 is scalar valued, S - t  (i,w) = 

(S( i ,v ) ) - '  if S ( i , w ) )  # 0 and S - t  ( t , w )  . = 0 if S ( i , w )  = 0. 
This implies that the expansion coefficients can be calculated 
utilizing only the nonzero values of ( Z g )  (i, w )  . (For a different 
approach that leads to a similar result, see [28].) 

A third solution to the problem of instability is to consider 
an oversampling scheme ( M N  > L ) ,  in which case, the FZT 
plays an important role as well [3]. The effect of oversampling 
is easily understood in the case of an integer oversampling rate, 
i.e., for L/(MN) = l / q ,  where q > 1 is an integer. In such 
a case, S ( i , w )  is scalar valued 

a-1 

1=O 

Therefore, if Zg has only a single zero (in a square of size 
N x M' in the (i, w )  plane), such an oversampling will clearly 
stabilize the scheme since S ( i ,  U) do sh. Moreover, if 
S(i ,  U )  does vanish, the expansion c that correspond 
to the generalized inverse solution can be found by utilizing 
only the nonzero values of S ( i ,  w )  similarly to the critical 
sampling case. 

In some cases, there is an advantage in performing the 
analysis in the signal domain. For example, consider g ( i )  such 
that g ( i )  = 0 for N 5 i 5 L -  1 ( g ( i )  is compactly supported). 
In such a case, S( i )  is diagonal with 

M-l 

( S ) k , k ( i )  = 1g(i + kN - "')I2. 
m=O 

Therefore, {gm,n} constitutes a frame if and only if (S)O,O(Z) 
does not vanish for i E K. It is a tight frame if and only if 
(S)o,o(i) is a constant function, and the dual frame is given by 

m=O 

It is interesting to point out the particular case of an integer 
undersampling rate, e., L / ( M N )  = p ,  where p is an integer. 
In this case, G(z, w )  of size 1 x p ,  i.e., it is a vector-valued 
function, and 

P - 1  

P(i ,  w )  = N/p  i (Zg)( i ,  w + kM'/p)I2 
k=O 

frame (which is a basis) if and only if ( t g ) ( i ,  w )  does not is scalar valued. In fact, G(i, w) = g * ( i ,  w ) .  Therefore, if 
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signal 
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Fig. 1 .  (a) Signal. (b)-(d) Signal’s components. (e) and (f) Narrow and wide windows. 

{gm,n} constitutes a basis in its own span, i.e., P(i ,v )  does 
not vanish, based on (36), the FZT of the window function 
that generates the dual (biorthonormal) basis is 

window functions g, are defined by 

g,(i)  = g ( i  - a,) exp ( 2 ~ 2 -  ?) 

1 ( L  

(53) 

where it is sufficient to consider a, E E, b, E x. We assume 
that a, = ak, b, = bk only if T = k and then have 

(52) N ( a l ) ( i ,  U) 
( Z Y ) ( i , V )  = P- 1 

pCI(Zg)(i,v + kM’/P)I2 
k=O 

g ( i  - ”’ - a,) 
ib,mN‘ 

~ , , ~ , ~ ( i )  = exp - 2 ~ 2 -  Note that if P(i,  v) does vanish, we can still calculate St (i, w), 
in which case, the dual frame (a frame in its own span) window 
function is given by (52) but is zero wherever P(i ,  v) vanishes. 
This particular case was analyzed by a different method in 
[28], yielding a similar solution. 

B. Nonrectangular Sampling of the Combined Space 

In the case of a single-window scheme, one may view 
the representation functions gm,n(i) as localized around the 
points (mN’,nM’) of the combined discrete finite time- 
frequency space (phase space) of size L x L. Clearly, the 
functions defined in (51) represent a rectangular sampling of 
the combined space (rectangular lattice). Utilizing the scheme 
of several window functions, one may sample the combined 
space according to a nonrectangular lattice. 

For example, consider a two-window scheme such that 
go(Z) = o ( Z ) , g ~ ( i )  = g ( i  - a ) e x p ( 2 ~ z ( i b / l ) ) ,  where a E 
- N’,  b E JL’. Now, the combined space is sampled at the points 
(mN’, nM’) U (mN’ + a ,  nM’ + b) .  In particular, we may 
construct a hexagonal lattice [29] by taking a = N ’ / 2 ,  b = 
M’/2  (assuming N ’ ,  M’ is divisible by 2). 

A general setting of a nonrectangular sampling, based on 
a single window function g ( i ) ,  is based on (l), where the R 

( i(nML+ b , ) ) .  .exp 2 ~ 2  

Based on (16), the elements of the matrix S( i )  in the signal 
domain are 

R- 1 
( k  - l )b ,  

(s),,l(i) = N  exp (2T2 M /  ) 
r=O 

M-1 
* g( i  - U ,  + kN - mN’) 

m=O . 
(54) . g ( i  - a, + 1N - mNI). 

The elements of the matrix S ( i ,  v) can be easily found based 
on 

(Zg, ) ( i ,  v) = ( Z g ) ( i  - a,, v - b,) exp 2 ~ 2 -  . (55)  

In this setting, the sequence {g,,m,R.} is generated by a 
single window function. This is not true for the dual frame 

( ?) 
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Fig. 2. 
windows, respectively. (c) and (d) Corresponding absolute value plots. (e) and (f) Cross-section at m = 22 

Single-wmdow schemes. (a) and (b) Gray-level plots of the absolute values of the expansion coefficients corres 

m = 11 for the wide window, respectively (g) and (h) Dual frame window functions of the narrow and wi 

{T, ,~,~} ,  except for some particular cases. If The dual frame window 
domain ~ ( i )  = S-'(i N' M' --1 , 

a, = - r ,  R b, = -r R Y ( 2 , V )  = s (z,v)g( i ,V)) .  

VI. EXAMPLE OF IMPLEMENTATION (assuming N',M'  are divisible by R), the dual frame is 
generated by a single window function y ( i )  [8], [91 

In the case of a multicomponent signal where the com- 
y ( i  - a, - m N ' )  

ab,"' 
~ , , ~ , ~ ( i )  = exp -2~2-  ponents are distinctly characterized in 

(position-frequency) space, it is not PO 

optimal window for a single-window scheme. In such cases, 
it is advantageous to use the multiwindow scheme as is 

(56) 

1 ( L  
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Fig. 3. Double-window scheme. (a) and (b) Gray-level plots of the absolute values of the expansion coefficients corresponding to the narrow and wide 
windows, respectively. (e)  and (d) Corresponding absolute value plots. (e) and (f) Cross-section at m = 11 for the narrow and wide windows, respectively. 
(g) and (h) Dual frame window function for the narrow and wide windows, respectively, 

demonstrated by the following example. Consider the signal 
f ( i )  [Fig. l(a)] of length L = 480, which is comprised of 
three different components: f ( i )  = f l ( i )  + f ~ ( i )  + f 3 ( i ) .  The 
signals fi(i), f 2 ( i )  [Fig. l(b) and (c)] are two time-limited 
tones overlapping in time. The signal f3(t) [Fig. l(d)] is a 
wide Gaussian envelope. 

Three hfferent schemes are utilized in order to analyze the 
structure of the signal, and their performances are compared. 
First, we consider a single-window scheme ( E  = 1) with 
a narrow Gaussian window [Fig. l(e)] and M = 48,N = 

30, p = 1, q = 3. Second, we consider a single-window 
scheme with a wide Gaussian window [Fig. l(e)], and M = 
24, N = 6 0 , p  = 1, q = 3. Finally, we consider a double- 
window scheme ( R  = 2) with both the narrow and wide 
windows, and M = 24,N = 30,p = 2 , q  = 3. 

Note that in all three cases, we use the same number 
of representation functions, whereas the tessellation of the 
combined space is different. Even in the case of a single 
window, there is a proper way or even an optimal one to 
tessellate the combined space once the structure (including 
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width) of a window has been selected with reference to the 
signals to be analyzed. To be more specific, given a certain 
sampling density of the combined space, there is a degree of 
freedom of determining the distribution of the representation 
functions. However, if the criterion of optimal (minimal) 
condition number (recall that the condition number is equal to 
B/A)  is to be satisfied, the distribution of the representation 
functions is dictated by the window. For tb s  reason, in the 
two cases of the single-window scheme, the distributions are 
different, whereas in the case of the wide window, there is a 
high density of representation functions along the frequency 
axis and low density along the time (position) axis, and in 
the case of a narrow window, the densities are the other way 
around. Consequently, in the case of the wide window, there 
is a high resolution along the frequency axis on the expense of 
a wide spread along the time (position) axis, which eliminates 
the temporal (spatial) fine structure of the signal. In the case 
of the narrow window, the distributions of the functions and 
resultant resolutions are the other way around. In the case of 
a multiwindow scheme, the distribution is also dictated by 
the windows, but the scheme incorporates several degrees of 
freedom. Therefore, to simplify matters and reduce the number 
of degrees of freedom, we have limited the analysis to the case 
of identical overlaying sampling grids of the combined space 
for all windows. (Note that the distributions do not have to 
be identical and, in fact, should be different to satisfy some 
kind of optimality). Based on these restrictions and the fact 
that the number of representation functions is similar for all 
schemes, we obtained the distribution for the double-window 
scheme (the distribution along the frequency axis is similar to 
the distribution for the narrow single-window scheme, and the 
distribution along the temporal (spatial) axis is similar to the 
distribution for the wide single-window scheme). 

The absolute values of the expansion coefficients corre- 
sponding to the narrow and wide single-window schemes are 
shown in Fig. 2(c) and (d) respectively, with corresponding 
gray-level plots shown in Fig. 2(a) and (b), respectively. Cross 
sections at m = 22 ( m N /  = 220) for the narrow window and 
at m = 11 (mN’ = 220) for the wide window are shown 
in Fig. 2(e) and (f), respectively. The dual frame windows 
are shown in Fig. 2(g) and (h) for the narrow and wide 
windows, respectively. Considering first the narrow window 
case, Fig. 2 clearly depicts the Gaborian representation of the 
wide Gaussian envelope, along with some traces of the two 
tones. Note, however, that the fingerprint of the low-frequency 
tone is not so clear, i.e., it merges with that of the wide 
Gaussian envelope (a spread over the frequency axis). In the 
case of the wide window, one can clearly see the three different 
frequencies corresponding to the Gaussian envelope and the 
two tones. However, the temporal (spatial) resolution of the 
two tones is very poor, i.e., there is a wide spread of the signal, 
in particular, of the high-frequency tone. 

The absolute values of the expansion coefficients of the 
double-window scheme are shown in Fig. 3(c) [with cor- 
responding gray-level plot in Fig. 3(a)] for the coefficients 
corresponding to the narrow window and in Fig. 3(d) and 
(b) for the coefficients corresponding to the wide window. 
A cross section at m = 11 (mN’ = 220) for the narrow and 

wide windows is shown in Fig. 3(e) and 3(f), respectively. In 
addition, the dual frame windows are shown in Fig. 3(g) and 
(h) for the narrow and wide windows, respectively. It appears 
as though the multiwindow scheme can, with proper rate of 
oversampling, overcome in some way the limitations imposed 
by the uncertainty principle on the simultaneous resolution in 
time (position) and frequency. In the case of the multiwindow 
scheme, each of the windows can lock on certain components 
of the signal if the windows are properly selected. By dis- 
playing the components corresponding to the two windows of 
the above (double-window) example separately, it is observed 
that this is indeed the case. The broadly tuned (in time) 
Gaussian component of the signal is clearly captured by the 
wide window, whereas the two tones are hardly represented 
(and are smeared in time) by this window. On the other hand, 
the two tones are clear and localized in the representation of 
the components correspondi o the narrow window, whereas 
the broad Gaussian component is hardly represented. 

Note the different structure of the dual windows correspond- 
ing to the single- and double-window schemes. Clearly, in the 
double-window scheme, one window is affected by the other 
(which is not so in the case of the single window). This, in 
fact, causes the advantages offered by a double-window (mul- 
tiwindow) scheme. Thus, the processing, signal component 
separation, and identification obtained by the double-window 
scheme cannot be obtained by a combination of processing by 
two single-window schemes. 

APPENDIX A 

For vector-valued functions as defined in (lo), we have 

PROOF OF EQUATIONS (15) AND (16) 

= g r ( i  + kN - mN’) exp ( 2 m -  ;) . 

In the domain of vector-valued functions, the kth element 
k E E of S acting on f is 

R-1 M-1 N - l  

R-1 M - l  N-1 

= g r ( i  + k~ - mN’) exp 2 m -  
r=o m=O n=O ( a) 
. exp (-2azg). 

basis for the Hilbert space of square 
of length N ,  we have 

R-1 M-1 M’- l  

which, in terms of matrix algebra, yields (15) and (16). 
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APPENDIX B 
PROOF OF (19) AND (20) 

Based on the definition of the FZT (4), it can easily be 
shown that 

( 2 g T , m , n ) ( i , w )  = ( 2 g T ) ( i  - mN‘, w )  exp 

Let L / ( M N )  = p / q ,  where p ,  q are relatively prime integers. 
It then follows that M’/p = M / q  is an integer. For m = 
m‘q + 1,1 E - q,  m‘ E M‘/p, we have 

~ 

(Zgr,mlq+i,n)(i, w )  = ( Z g T ) ( i  - IN‘, w )  exp 

+ exp ( -2azF) .  m’pw 

In the PFZT domain, the kth element k E p - of S acting 
on f ( i , v )  is 

R- 1 N - 1 ( M ’ / p )  - l q -  1 

exp ( 2 m g )  exp (-2.2%) 

’ ( 2 g r ) ( 2 ’  - IN’, 21’ + jM’ /p)  

. exp (2.2%) exp (-2.2%). 

Since 

{ d m  exp ( 2 n z ( i n / ~ )  exp ( - 2.2 ( m ’ ~  

constitutes an orthonormal basis for the Hilbert space of square 
summable 2-D finite signals of size N x M’/p, we have 

I ,,! 

IT R-1 q-1 

(Sf)& w )  = ’v X ( 2 g r ) ( i  - IN’, w + kM’/p)  m 
r=O Z=O 

p - - ]  

. Ctm, v)(ZgT-)(i - IN’, ‘U + jM’/P) 
3 =O 

which in terms of matrix algebra yields (19) and (20). 

APPENDIX C 
RELATIONS FOR THE FRAME BOUNDS 

Let 

A(i)  = minA,(S)(i), B(i)  = maxA,(S)(i). 
3 3 

Since for each i S ( i )  is self-adjoint and positive semi-definite, 
we have 

(58)  A(i)f*(i)f(i)  I f*(i)S(i)f(i) 5 B(i)f(i)*f(i) 

for all f ( i ) .  Basically, the frame bounds satisfy 

A = inf (S f , f ) ,  B = sup ( S f , f ) .  
Ilfll=1 Ilfll=1 

Therefore, based on (58) and on 

i=O 

we have for the frame bounds 

A 2 minA(i) (59) 

B 5 maxB(i). (60) 
aEN 

%EN 

To show that equality is obtained in (59), we find a function 
f ( i )  for which an equality is satisfied. Let i,,, be such 
that in (23), A = X3(imtn)  for some j ,  i.e., A3(imin) is 
the minimum eigenvalue of S(imln). Choose f ( i )  such that 
f(imln) is the corresponding normalized eigenvector of the 
minimum eigenvalue and zero for other values of i. This f(i)  
satisfies the equality. Similarly, by choosing an appropriate 
f ( i )  (corresponding to the maximum eigenvalue), equality in 
(60) is obtained as well. 

APPENDIX D 
PROOF OF THEOREM 5 

The orthonormality condition is 

where 6, is the Kronecker delta function. Explicitly, this 
condition can be written as 

Reordering i = i t  + j N ,  it E E, j E a (61) becomes 

gt(i’ + j N  - 1”) = 6 t - s S k - ~ S n .  (62) 

One observes that the left-hand side of (62) involves a DFT 
of size N .  Therefore, performing IDFT on both sides of (62), 
we obtain the following necessary and sufficient condition for 
orthonormalit y : 

MI-1 

g,(i + j N  - kN’)gt(i + j N  - IN’) = St-,SI,-drl  
3=0 

(63) 

for all i E N. 
On the other hand, we calculate the entries of the matrix- 

valued function P(i) .  Partition P(i )  into blocks in the follow- 
ing manner: 

p 0 , R - 1  

(2) . . . p - 1 J - 1  

P(i) = 
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where each block P”’(i) is a matrix-valued function of size 
M x M ,  with entries 

MI-1 

( P t > “ ) l , k ( 2 )  = N g,(i + j N  - kN’)gt(i  + jlv - ZN’). 
3 =0 

Therefore, P(i )  = I is equivalent to (63), which is equivalent 
to the orthonormality condition. Similarly, one can prove that 
&i ,  v)  = I ,  is equivalent to the orthonormality condition. 0 
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