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Abstract

An affine-group-based design methodology of Gabor-type filter bank is presented for the purpose of image analysis and syn-
thesis. Various tessellations of the combined spatial-feature space are considered. We combine ideas introduced by Daugman
[J.G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional vi-
sual cortical filters, J. Opt. Soc. Am. 2 (7) (1985) 1160–1169], Lee [T.S. Lee, Image representation using 2D Gabor-wavelets, IEEE
Trans. PAMI 18 (10) (1996) 959–971] and Manjunath and Ma [B.S. Manjunath, W.Y. Ma, Texture features browsing and retrieval
of image data, IEEE Trans. PAMI 18 (8) (1996) 837–842], and extend them by applying the action of the full affine group on
Gaborian-type mother wavelets. In this approach we adopt optimality criteria of minimal spatial-features combined uncertainty,
as well as tightness of the frame tessellating this combined space. In this work, scalings in the x and y directions, allowing for
independent dilations in these two directions, as well as rotations and translations are allowed. For each discrete set of scalings,
rotations and translations the frame bounds are calculated. For frames where the frame operator is well approximated by a multiple
of the identity, we use the same set of functions in the analysis and synthesis, as though the frame is equivalent to an orthogonal
basis. Moreover, we show that in the case of independent scalings in the x and y directions, the number of dominant (characteristic)
orientations of the filter bank may depend on scale. We further show that the orientation bandwidths thus obtained, resemble those
attained under the constraint imposed by the uncertainty principle.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

Information regarding local features of images is essential for image understanding and for implementation of
various image processing and computer vision algorithms. For example, quantification of the local frequency, scale
and orientation in the neighborhood of a specific pixel can be useful in determining the structure and local properties
of the image.

A common approach to specification of this type of information is via image analysis by means of a filter bank.
A set of such bank of filters can be obtained by applying the action of a group of operations (e.g., translations,
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rotations, scaling and modulations) on some basic generating (“mother”) function [11,14]. The local features are then
obtained by the convolution of the generated filters with the image [20]. This can also be understood as a projection
of the image on the subspace spanned by the filter.

Two interesting questions arise in this context. The first regards the selection of the optimal generating function.
As there can be several optimality criteria a possible one is to select the function that provides maximal accuracy with
respect to the local features of interest. This is equivalent to the selection of a generating function that minimizes the
uncertainty of the local features. In 1946 Gabor has shown that representation of images using Gaussian functions
modulated by complex exponentials is optimal in the sense of minimizing the joint uncertainty in the combined time–
frequency space [9]. Thus, these functions provide the best trade-off between time- and frequency-resolution. These
findings were later extended to two dimensions by Daugman [4], where he noted the reciprocal relations between the
spatial domain resolution and the frequency or orientation resolution in the Fourier domain. He developed a relation
between the orientation half-bandwidth and the spatial frequency bandwidth.

The problem of finding the minimizer for a generalized uncertainty principle was also discussed in the past in the
context of harmonic analysis and more recently in the context of group theory. Researchers [1,6] have considered the
affine group in one dimension and the similitude group in two dimensions. In these studies, it was shown that there
does not exist a non-trivial canonical function which minimizes the uncertainty equation associated with the similitude
group of R

2. In a recent study, we have extended these results to the case of the full affine group and also considered
the affine Weyl–Heisenberg group which accounts for spatial and frequency translations as well as for spatial dilations
[18,19].

Once an optimal mother function is selected, the second question regards the optimal tessellation of the spatial
and/or the features’ space. The present study is devoted to the discrete sampling of the Lie group parameter-space
such that an optimal filter bank is provided. For the sake of this analysis we choose to work with the Gabor filter
bank. This is the set of modulations of a sine wave by functions that result from the application of some group ac-
tion (e.g., translations, dilations and rotations) to a specific mother wavelet, a Gaussian in this case. The Gabor filter
bank is chosen because of its simplicity and its frequency-scale sensitivity. It is not the only possible choice though.
Other approaches that employ translation, rotation and dilation to generate a filter bank and extract the local properties
of images were suggested in recent studies. The curvelet transform [3] accounts for directional parabolic scaling of
the mother function. The shearlet transform [10,12] is a new approach, that employs affine systems, and therefore
possesses mathematical properties similar to those of wavelets. More specifically, it accounts for a single generat-
ing mother shearlet function parameterized by scaling, shear, and translation parameters, where the shear parameter
captures the direction of singularities [12]. Finally the contourlet transform [7] provides both multi-resolution and
multi-direction expansion using non-separable filter banks that rely on contour segments.

Next, we would like to have a filter bank with good coverage of the combined spatial-features domain. Thus, the
measure of optimality is adopted here as the synthesis ability, in the sense that the filter bank has a tight frame property.
This property guaranties a good reconstruction of the image from the filter bank by linear combination of these filters.
This turns the filter bank to become similar to an orthonormal system from the viewpoint of reconstruction (i.e.,
synthesis).

In this study, we combine ideas offered by Manjunath and Ma [15], Lee [13] and Daugman [4] to provide a
systematic approach to tessellation of the combined space so that the related frame bounds can be evaluated.

Manjunath and Ma [15] have considered the issue of designing a Gabor-wavelets filter bank in the context of
browsing and retrieval of images in a large database. Their task was to define a signature which characterizes the
contents of an image. They have selected this signature to be the vector of the absolute values of the responses
obtained when calculating the inner product between the image and a set of Gabor filters. They have used Gabor
wavelets that were generated by the action of the SIM(2) group operations; i.e., dilations (with the same scaling factor
for the x and y axes), rotations and translations. The similitude group of R

2 as a topology space is isomorphic to:
SIM(2) = (S1 ×R

+)�R
2. Choosing the parameterization of this space by (θ, a, �b), where a > 0, θ ∈ [0,2π], �b ∈ R

2,
the group law is then given by

(θ, a, �b)(θ ′, a′, �b′) = (θ + θ ′, aa′, �b + aRθ
�b′), (1)

where Rθ implies a rotation matrix by an angle of θ . The design strategy of Manjunath and Ma was based on the
constraint that the curves of the filters’ half-peak magnitude, in the frequency domain, kiss each other, e.g., they have
one point in which they share the same tangent line.
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Lee [13] has considered image representation in the context of a frame approach. Thus, the bank of filters selected in
his study constitutes a frame. The frame criterion for one-dimensional wavelets was first developed by Daubechies [2].
It was further developed into a matrix algebraic approach for the analysis of multi-window Gabor-type schemes [21],
and extended to two dimensions [13]. In the latter study, the spatial frequency space was paved using a single dilation
parameter for the x and y directions. Moreover, the calculations of frame bounds were only carried out for the octave
or sub-octave cases.

We follow the guidelines of the studies by Daugman, by Manjunath and Ma and the study by Lee, and offer various
tessellations of Gabor filters. There are several novelties in our study. First we treat the scaling along the x and y

directions separately. The consequence is an increase in the number of possible filter banks available. Next we choose
the biologically motivated Gabor mother wavelet and calculate the frame bounds for different scalings in the x and y

directions and present the results of reconstruction of images with the linear summation formula (we do not use the
dual frame for the synthesis procedure. The interested reader is referred to [2,8,21]). We show that the higher is the
overlap between the Gabor wavelets in the frequency domain, the tighter is the frame they form. Moreover, we show
that when the scalings in the x and y directions are independent of each other, the number of orientations required to
guarantee a certain degree of overlap between the frequency responses of the filters depends on the scales. We find that
the calculated orientation bandwidth has an interesting resemblance to the orientation bandwidth derived by Daugman
in the context of uncertainty.

The rest of this paper is organized as follows: First, we address the issue of tessellation of the position–frequency
combined space with Gabor functions. We refer to the work of Manjunath and Ma, and extend it for parameters of
the full affine group. Next, we generalize the work of Lee and calculate the frame bounds for Gabor filters for affine
group parameters. Then, we present several filter banks along with the tightness of the frames they form, as well as
reconstruction results of images. We provide a detailed analysis of the calculation of the frame bounds in Appendix C.

2. Tessellation of the spatial-frequency space with Gabor functions

Recall that a Gabor function centered at the 2D frequency coordinates (ωx,ωy) has the general form of:

ψ(x, y) = g(x′, y′) exp
(
2πi(ωxx + ωyy)

)
, (2)

where

(x′, y′)t = R(x, y)t = (
x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ)

)t
, (3)

where R is a 2 × 2 rotation matrix, and g(x, y) is a non-symmetric two-dimensional Gaussian

g(x, y) = 1

2πσxσy

exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
. (4)

The parameters σx , σy denote the effective widths in the x and y directions respectively, whereas the major axis of
the Gaussian is oriented at angle φ relative to the x-axis. Accordingly, the Fourier transform of the Gabor function is

ψ̂(ξ, ν) = exp
(−2π2(σ 2

x (ξ ′ − ω′
x)

2 + σ 2
y (ν′ − ω′

y)
2))

, (5)

where (ξ ′, ν′) and (ω′
x,ω

′
y) are rotated frequency coordinates. Thus, ψ̂(ξ ′, ν′) is a bandpass Gaussian with its minor

axis oriented at angle φ from the ξ -axis, and the radial center frequency ω is defined by ω(x, y) = (ω2
x +ω2

y)
1/2, with

orientation θ(x, y) = arctan(ωy/ωx).
Studies of the Human Visual System (HVS) pointed to the fact that simple cells in the HVS can be modeled by

Gabor functions [5,16]. Therefore, researchers [4,13,17] have suggested the usage of physiological constraints to
reduce the number of degrees of freedom for the Gabor function:

– Constraint 1: The aspect ratio of the elliptical Gaussian envelope is 2:1 [4].
– Constraint 2: The plane wave with frequency (ωx,ωy) tends to have its “propagating direction” along the short

axis of the elliptical Gaussian, i.e., ωx = ω cos(φ), ωy = ω sin(φ), where φ has already been defined as the
orientation of the filter. Thus the orientation of the sine/cosine is aligned with the major axis of the elliptical
Gaussian.
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Applying these constraints, the following mother wavelet is obtained:

ψ(x, y) = 1√
2πσ

e
− 1

8σ2 (4x2+y2)
eiωx. (6)

In our study we use this mother wavelet [13], and employ it in the context of the tessellation of the frequency plane.
The frequency space is tessellated according to translations of the frequency parameters in the x and y directions.
However, it is possible to generate Gabor wavelets from a single mother-Gabor-wavelet by the action of a group, e.g.,
the SIM(2) group, upon it, e.g., translations, rotations and dilations.

One question in this context concerns the choice of the group that acts on the mother wavelet. Other questions arise
after we choose a group and want to apply a numerical algorithm. In this case one should discretize the group’s para-
meters. The choice of the discretization affects the tessellation of the frequency domain and the ability to sinthesize
the original function from its projections on the filters.

Choosing the SIM(2) group, the following discretization may be used: We use a set of filters for a finite number of
scales, S, and orientations K. The filters that are generated from these choices are

ψmn(x, y) = a−mψ

(
x′

am
,

y′

am

)
, (7)

where (x′, y′) are the spatial coordinates rotated by πn
K

and scaled by powers m = 0, . . . , S − 1.
Manjunath and Ma [15] have considered the generation of a Gabor filter bank for applications such as browsing

and retrieval of images in large databases. Their design strategy was to ensure that the curves of half-peak magnitude
of the filters in the frequency domain are kissing, i.e., they share a tangent line in one point of the curve. This design
strategy leads to a set of constraints on the filter bank parameters: the scaling parameter a, the variances in the x and
y directions, the lowest and highest frequencies allowed for the filter bank, and the number of scales. Out of theses
seven parameters four can be defined, and the other three are determined by the constraints of the design strategy.

We extend the design methods of Manjunath and Ma in two directions: the first is to use different scaling parameters
for the x and y directions. The second direction is to investigate the frame properties of this design methodology. The
basic assumption of Manjunath and Ma is that the half-peaks of the filters in the frequency domain should touch
each other. However, does this constraint necessarily lead to a design of a tight frame? Or should the filters touch
each other not at half-peak, but at 0.7-peak or perhaps 0.3-peak. In order to answer these questions, we refer to the
work of Lee [13]. Lee has extended the frame criterion developed by Daubechies for one-dimensional wavelets to two
dimensions. He has also computed the frame bounds for the case of Gabor wavelets based on the SIM(2) group. We
extend the two-dimensional frame criterion to account for different scalings of the x and y dimensions. We elaborate
on this issue in the next section.

Next, we calculate the filters’ parameters, under the constraint that their λ-peak curves “kiss” each other. In the
analysis of Manjunath and Ma, λ is fixed to 1

2 .
Let ψ(x, y) be the (non-admissible) mother Gabor wavelet:

ψ(x, y) = 1√
2π

e− 1
8 (4x2+y2)eikx . (8)

The Fourier transform of this function is equal to:

ψ̂(ξ, ν) = √
8πe− 1

2 ((ξ−k)2+4ν2). (9)

The self-similar filters are generated using the law:

ψmn(x, y) = (axay)
− m

2 ψ(x′
mn, y

′
mn), (10)

where x′
mn = a−m

x (x cos θn + y sin θn), y′
mn = a−m

y (−x sin θn + y cos θn).
In the frequency domain we obtain:

ψ̂mn(ξ, ν) = (axay)
m
2 ψ̂

(
am
x ξ ′

mn, a
m
y ν′

mn

)
, (11)

where ξ ′
mn = a−m

x (ξ cos θn + ν sin θn), ν′
mn = a−m

y (−ξ sin θn + ν cos θn), and θn = nπ/r .
Next, we apply the constraint that the λ-peak curves kiss. We follow the guidelines of Manjunath and Ma [15].

It is important to notice the difference in this situation from the Manjunath and Ma analysis: here the number of
orientations depends on the scale. We denote, therefore, by r(m) the number of orientations in the mth scale.
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Fig. 1. The zero level scale filter, ψ̂00, and the first level scale filter, ψ̂10, both aligned to the same orientation, touch at λ-peak.

Fig. 2. The filter in the zero level orientation ψ̂00 is tangent to the first level orientation filter ψ̂01 at the point: ν = tan π
2r

.

We would like the zero level scale filter, ψ̂00, and the first level scale filter, ψ̂10, both aligned to the same orientation,
to touch at λ-peak as illustrated in Fig. 1. This constraint leads to the relation between the scaling factor ax , the factor λ

and the wave number k (see proof in Appendix A):

k = ax + 1

ax − 1

√−2 logλ. (12)

The second constraint is that the filter in the zero level orientation ψ̂00 touches the first level orientation filter ψ̂01 at
λ-peak as can be seen in Fig. 2. This is the same as requiring that the line ν(ξ) = tan( π

2r
)ξ is tangent to the λ-peak

level set of both filters in the frequency domain. This means that we have to find ξ and ν that obey the tangent line
equation, and that are located at the λ-peak of ψ̂00(ξ, ν). This means that there should be a single solution to the
equation:

ψ̂00
(
ξ, ν(ξ)

) = λmax|ψ̂00|.
Substituting ψ̂00 and the relationship ν = tan π

2r(0)
ξ , we obtain (see proof in Appendix A):

π

2r(0)
= arctan

√
− logλ

2k2 + 4 logλ
. (13)

This is a constraint that relates the filter’s basic parameter k to the number of orientations needed in order to obtain
the λ-peak tangency relation. This derivation holds only for the zero level scale filters. Going up to the first level scale
filters, and applying the same procedure, we obtain the following result:

π

2r(1)
= arctan

(
ax

ay

√
− logλ

2k2 + 4 logλ

)
. (14)

This is easily extrapolated to the m-level scale filters as follows:

π

2r(m)
= arctan

((
ax

ay

)m
√

− logλ

2k2 + 4 logλ

)
. (15)

Thus, we have a mechanism to determine the number of orientations per scale so that there is a certain amount of
overlap between the Gabor functions:

r(m) = π

2 arctan
((

ax

ay

)m
√ − logλ

2k2+4 logλ

) . (16)

This can be related to the work of Daugman [4] which deals with the orientation selectivity of simple cells in the
visual cortex and its relation to spatial frequency and spatial resolution. His analysis is within the framework of the
uncertainty principle. In his work, Daugman has presented the relations between the width/length aspect ratios of the
filter in the spatial domain and the resolution of the spatial frequency and orientation in the frequency domain. He has
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Fig. 3. Both the asin (left) and atan (right) functions have a monotonically increasing behavior in the range [−1,1]. Thus, the dependence on the
ratio ax

ay
is the same for the orientation bandwidth and the basic angle in our sampling scheme.

shown that elongating the filter in the direction parallel to the modulating wave sharpens the orientation bandwidth
but has no effect on the spatial-frequency bandwidth. If the filter is elongated in the direction perpendicular to the
modulating wave, then the spatial-frequency bandwidth sharpens, but there is no effect on the orientation bandwidth.
Thus, sharp spatial resolution in the y direction can be obtained at the expense of the orientation selectivity, or sharp
spatial resolution in the x direction can be obtained at the expense of the spatial-frequency selectivity. Daugman has
found that the following relation exists between the orientation and the spatial-frequency bandwidths:

�θ 1
2

= arcsin

(
β

2�ω − 1

2�ω + 1

)
, (17)

where �θ 1
2

is the orientation half-bandwidth, �ω is the frequency bandwidth in octaves, and β is the aspect ratio
between the x and y axes of the Gaussian. This relation was proved by Daugman in [4].

We extend the derivation of Daugman from the mother wavelet to the whole filter bank. Assuming that an affine
transformation is applied to the mother wavelet such that it is scaled by some global scale m, while taking into account
our freedom to have different scalings in the x and y directions. Consider a Gaussian modulated sine-wave function.
Let �θ 1

2
be its orientation half-bandwidth, �ω its frequency bandwidth in octaves, and β the aspect ratio between the

x and y axes of the Gaussian. Then we obtain

Lemma 2.1. The following relationship holds:

�θ 1
2

= arcsin

(
β

(
ax

ay

)m 2�ω − 1

2�ω + 1

)
. (18)

Proof. The proof is a straightforward extension of the proof in [4] to some scale m. We provide the detailed proof in
Appendix B. �

The arcsin function is monotonically increasing in the range (−π,π). Therefore, the larger ax is, for a specific
scale, the larger is �θ 1

2
. On the other hand, as ay is larger, �θ 1

2
becomes smaller.

It is interesting to see that the two derivations, one coming from some reasonable pavement of the frequency plane
and the other one coming from uncertainty considerations lead to the same dependence on the ratio ax

ay
. This is because

both the arctan and the arcsin functions have a monotonically increasing behavior in the range (−π,π) (Fig. 3).
To conclude, we can derive filter banks that pave the frequency plane in various ways: constant number of orienta-

tions per scale, increasing number of orientations per scale and decreasing number of orientations pet scale, depending
on the ratio between ax and ay , as can be seen in Fig. 4.

3. Frame bounds for Gabor filters for affine group parameters

In 1996 Lee has extended the frame criterion developed by Daubechies for one-dimensional wavelets to the two-
dimensional situation [13]. He also computed the frame bounds for Gabor wavelets, and specifically has found a
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Fig. 4. In this figure the number of orientations depends on the scale m, and specifically on the ratio (
ax
ay

)m. As can be seen as this ratio is smaller,

the number of orientations per scale becomes larger and vice versa.

parameterizations and a group sampling scheme which allowed stable reconstruction by summation, as if the Gabor
wavelets would form an orthonormal basis. This happens when the parameterization and sampling selected lead to a
setting of an almost tight frame, or a perceptually tight frame. By perceptually tight frame we mean a frame which
leads to signal reconstruction that is perceptually indistinguishable from the original one. Thus, non-perceptible errors
in the construction are allowed. This freedom enables to accept frames for which the frame bounds are not identical
but such that the ration between the upper to the lower bound is sufficiently close to 1.

In his derivation, Lee has used the SIM(2) group operations to generate the family of self-similar Gabor wavelets.
In this section we extend the derivation of the frame bounds to the affine group. This means that we may sample the
x and y directions using different scaling parameters. We also look for parameterizations that enable a tight frame, so
that the simple summation formula can be used for reconstruction.

Moreover, we would like to offer a link between the design of Gabor filters, as is manifested in the work of
Manjunath and Ma, to the mathematical framework that Lee developed.

3.1. The design of Gabor wavelets according to the SIM(2) group

Once the Gabor mother wavelet is set, a whole family of Gabor wavelets is constructed by the group actions. Lee
uses a constraint based on the HVS, which states that the half-peak of the filter, in the frequency domain, is between
one to one and a half octaves along the optimal orientation. This constraint determines the attributes of the Gabor
function, as it relates the sinewave frequency to the Gaussian’s width, thus giving the Gabor functions a wavelet
flavor. Moreover, it actually determines the degree of overlapping between the Gabor functions in the filter bank.
Thus, the mother Gabor function is

ψ(x, y) = 1√
2π

e− 1
8 (4x2+y2)

(
eikx − e− k2

2
)
, (19)

where the term e− k2
2 is added to make the Gabor filter an admissible wavelet, i.e., a L2 function with zero mean.

Next, Lee uses the SIM(2) group to generate the self-similar functions. He then samples the group parameters in
various ways and investigates the frame bounds of the corresponding filter banks.

We generalize Lee’s results to account for filter banks that are generated by more general transformations, e.g.,
affine group parameters.
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3.2. The design of Gabor wavelets according to the affine group

In the SIM(2) group the scaling of the x and y directions is the same. If we allow different scaling in the x and
y directions, we obtain, by sampling the group parameters, the following discrete representation of the affine Gabor
wavelets in the spatial space:

ψm,n,k,l(x, y) = a
− m

2
x a

− m
2

y ψθl

(
a−m
x x − nbx, a

−m
y x − kby

)
, (20)

where

ψθl
(x, y) = ψ

(
x cos(lθ0) + y sin(lθ0),−x sin(lθ0) + y cos(lθ0)

)
, (21)

and where θ0 denotes the step size of angular rotation, and l indexes the number of rotation steps.
Thus, at the m level, the x direction is sampled by am

x bx steps, and the y direction is sampled by am
y by steps.

In the frequency space the wavelets have the following form:

ψ̂mnkl(ξ, ν) = a
m
2
x a

m
2
y ψ̂θl

(
am
x ξ, am

y ν
)
e−iam

x bxnξ e−iam
y bykν, (22)

and the affine wavelets transform is given by(
T wavf

)
(ax, ay, θ, x0, y0) = ‖ax‖− 1

2 ‖ay‖− 1
2

∫ ∫
dx dy f (x, y)ψθ

(
x − x0

ax

,
y − y0

ay

)
. (23)

The design of the filter bank amounts at this stage to a proper choice of the discretization of the group action. The
group action is now parameterized by ax , ay , bx , by and θ0. The design criterion is the quality of the frame generated
by the set of functions {ψm,n,k,l}. Before we state our result let us review briefly the notion of a frame.

Let I denote a set. A set of functions {ψi}i∈I , in a vector space with a scalar product, is a frame if for any f in this
vector space

0 < A‖f ‖2 �
∑
i∈I

∣∣〈f,ψi〉
∣∣2 � B‖f ‖2 < ∞,

where the scalars A and B are called the frame bounds. If A equals B the frame is called “tight.” Otherwise the
tightness of the frame is determined by the ration B/A. The closer this ratio is to 1 the tighter is the frame and a better
reconstruction of the signal f from its projections 〈f,ψi〉 is obtained.

The frame bounds for the set {ψm,n,k,l} depend on the choice of discretization. Namely, the frame bounds A and B

depend on the parameters ax , ay , bx , by and θ0. This dependence is given in

Theorem 3.1. The frame bounds for the set {ψm,n,k,l}m,n,k∈Z, l∈Zr
are given by

A = 1

bxby

{
inf
ξ,ν

∑
m∈Z, l∈Z/rZ

F(ξ, ν) −
∑

(p,q)∈Z2\(0,0)

√
β

(
2πp

bx

,
2πq

by

)
β

(
−2πp

bx

,−2πq

by

)}
,

B = 1

bxby

{
sup
ξ,ν

∑
m∈Z, l∈Z/rZ

F(ξ, ν) +
∑

(p,q)∈Z2\(0,0)

√
β

(
2πp

bx

,
2πq

by

)
β

(
−2πp

bx

,−2πq

by

)}
,

where

F(ξ, ν) = ∣∣ψ̂θl

(
am
x ξ, am

y ν
)∣∣2

and

β(s, t) = sup
ξ,ν

∑
m∈Z

∣∣ψ̂θl

(
am
x ξ, am

y ν
)∣∣∣∣ψ̂θl(m)

(
am
x ξ + s, am

y ν + t
)∣∣.

Note that Eq. (16) gives a relation between m and r , namely a relation between the scale and the number of
rotations.

Proof. See Appendix C. �
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4. Results

We present in this section several filter banks that are generated with various scalings and orientations. We compare
the design criteria of the filter bank: the tessellation of the frequency domain and the degree of tightness of the
generated frame. The filters’ appearance in the frequency domain is shown for each selection of filter bank parameters
and the ratio B

A
between the frame bounds obtained using these parameters is calculated. The reconstruction for each

sampling scheme is also presented. The reconstruction is based on the linear summation formula:

f̃ = 2

A + B

∑
m,n,k∈Z, l∈Z/rZ

〈f,ψmnkl〉ψmnkl, (24)

where f̃ is the approximation for the reconstructed image f . We use the linear summation formula rather than using
the dual frame ψ̃mnkl for obtaining f :

f =
∑

m,n,k∈Z, l∈Z/rZ

〈f,ψmnkl〉ψ̃mnkl. (25)

The legitimacy of this procedure depends on the degree of the tightness of the frame. In principle, the tighter the frame,
the better the result we obtain. Nevertheless, in order to use non-dyadic translations of the filters, we are forced to use
some kind of interpolation to obtain sub pixel values. Thus, the interpolation itself may introduce numerical errors.
To simplify the summation over points which do not lie on the image’s grid, we make use of the fact that translations
in the spatial space are equivalent to phase shifts in the frequency space:∑

m,n,k∈Z, l∈Z/rZ

〈f,ψmnkl〉ψmnkl =
∑

m,n,k∈Z, l∈Z/rZ

〈f,ψmnkl〉F−1(F(ψmnkl)
)

=
∑

m,n,k∈Z, l∈Z/rZ

〈f,ψmnkl〉F−1(F (
ψmn

(
x − nbxa

m
x , y − kbya

m
y

)))

=
∑

m,n,k∈Z, l∈Z/rZ

〈f,ψmnkl〉F−1(F (
ψmn(x, y)

)
e−iξnbxam

x e−iνkbyam
y
)
,

where F(·) denotes the Fourier transform.

4.1. Number of orientations is constant through different scales

First, we address different scalings in the x and y directions, where the number of orientations is kept fixed, and
the value of the wave number k is also kept constant and is equal to π . This means, according to Eq. (16), that the
degree of overlap between the filters depends on the values of the scaling factors in the x and y directions.

4.1.1. The case of 8 orientations
In Fig. 5, the half-peak curves of the filters are presented for eight orientations, with different scaling parameters.

In this case, the value of ax is constant and is equal to 1.4 while ay takes the values: 1.4, 1.8, 2, 2.2. We may observe
that the larger ay is, the more overlap the filters exhibit in the angular direction. The angular resolution is therefore
lower as ay increases.

The frame bounds A and B are calculated for the eight orientations, and the tightness of the frame is measured by
the ratio B

A
. These ratio values are shown in Table 1. The smaller the value of ay , the tighter is the frame.

Next, in Fig. 6, we may see the appearance of the filter bank for eight orientations, where now the value of ay is
constant and is equal to 1.4 and ax takes the values: 1.4, 1.8, 2, 2.2. We observe that the smaller ax is, the denser is
the sampling in the radial direction.

The tightness of the frame, measured by the ratio B
A

, is shown in Table 2. As can be expected, the smaller the value
of ax , the tighter is the frame.

4.1.2. The case of 16 orientations
In Fig. 7, we may see the appearance of the filter bank for sixteen orientations, with different scaling parameters.

The half-peak values of the filters are presented. Here, the value of ax is constant and is equal to 1.4. ay takes the
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Fig. 5. The filter look for Nθ = 8 for ax = 1.4 and ay = 1.4, 1.8, 2, 2.2. The larger ay is, the more overlap the filters have in the orientation
direction.

Fig. 6. The filter look for Nθ = 8 for ay = 1.4 and ax = 1.4, 1.8, 2, 2.2.

Table 1
The ratio B

A
for eight orientations, where

ax = 1.4 and ay = 1.4, 1.8, 2, 2.2

ay
B
A

1.4 2.61
1.8 3.52
2.0 5.03
2.2 6.40

Table 2
The ratio B

A
for eight orientations, where

ay = 1.4 and ax = 1.4, 1.8, 2, 2.2

ax
B
A

1.4 2.61
1.8 3.12
2.0 3.37
2.2 3.77

values: 1.4, 1.8, 2, 2.2. The frame bounds A and B are calculated for the sixteen orientations, and the tightness of the
frame is shown in Table 3.

The reconstruction results for this case are shown in Fig. 8.
In Fig. 9, we may see the appearance of the filter bank for sixteen orientations, where now the value of ay is

constant and is equal to 1.4 and ax takes the values: 1.4, 1.8, 2.



Author's personal copy

184 C. Sagiv et al. / Appl. Comput. Harmon. Anal. 24 (2008) 174–194

Fig. 7. The filter look for Nθ = 16 for ax = 1.4 and ay = 1.4, 1.8, 2, 2.2.

Fig. 8. The reconstruction results for Nθ = 16 for ax = 1.4 and ay = 1.4 (top left), 1.8 (top right), 2 (bottom left), 2.2 (bottom right).

The tightness of the frame is measured by the ratios B
A

, which are shown in Table 4.
The reconstruction results are given in Fig. 10.

4.2. Number of orientations depends on scale

Next, we do not pre-determine the number of orientations. We fix the overlap of the filters by selecting λ = 0.5. We
explore the effect of changing the values of ax and ay where the number of orientations per scale is calculated using:

r(m) = π

2 arctan
((

ax

ay

)m
√ − logλ

2k2+4 logλ

) . (26)

The filters are drawn using the half-peak values.
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Fig. 9. The filter look for Nθ = 16 for ay = 1.4 and ax = 1.4, 1.8, 2.

Table 3
The ratio B

A
for sixteen orientations, where

ax = 1.4 and ay = 1.4, 1.8, 2, 2.2

ay
B
A

1.4 1.04
1.8 1.78
2.0 2.27
2.2 4.00

Table 4
The ratio B

A
for sixteen orientations, where

ay = 1.4 and ax = 1.4, 1.8, 2

ax
B
A

1.4 1.04
1.8 1.80
2.0 2.56

Fig. 10. The reconstruction results for Nθ = 16 for ay = 1.4 and ax = 1.4 (top left), 1.8 (top right), 2 (bottom).



Author's personal copy

186 C. Sagiv et al. / Appl. Comput. Harmon. Anal. 24 (2008) 174–194

Fig. 11. The filter look for ax = 1.6 and for ay = 1.6, 1.8, 2, 2.2. The number of orientations increases as scale increases (meaning that frequency
decreases, towards the origin).

Fig. 12. The number of orientations as a function of scale, according to Eq. (16). In this case ax � ay , and the number of angles increases with
scale for m > 0 and decreases with scale for m < 0.

In Fig. 11 we observe the appearance of the filter bank for ax = 1.6 and ay = 1.6, 1.8, 2, 2.2. Since for this case
ax

ay
< 1, we may see that the number of orientations is higher as the scale is larger (thus for lower frequencies). This

means that for lower frequencies there are more orientations than for higher frequencies. As can be seen in Fig. 12,
the number of angles increases with scale, when m is positive. When m is negative the number of angles decreases
with scale. The frame bounds calculated for this case are shown in Table 5. The reconstruction results for ax = 1.6
and ay = 1.6, 1.8, 2, 2.2 are shown in Fig. 13.

In Fig. 14 we observe the appearance of the filter bank for ay = 1.6 and ax = 1.6, 1.8, 2, 2.2. Looking again at the
dependence of the number of orientations on the scale:

r(m) = π

2 arctan
((

ax

ay

)m
√

− log(λy)

2∗(k2+2∗log(λy))

) ,
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Fig. 13. The reconstruction results for ax = 1.6 and ay = 1.6 (top left), 1.8 (top right), 2 (bottom left), 2.2 (bottom right).

Fig. 14. The filter look for ay = 1.6 and for ax = 1.6, 1.8, 2, 2.2. The number of orientations decreases as scale increases (meaning that the
frequency decreases, towards the origin).

we observe that for this case ( ax

ay
> 1) the number of orientations is higher as the scale is smaller (thus for higher

frequencies). This means that for lower frequencies we obtain less orientations than for higher frequencies. As can be
seen in Fig. 15, the number of angles deceases with scale, as the ratio ax

ay
is equal or larger than 1.

The frame bounds calculated for this case are shown in Table 6.
The reconstruction results for ay = 1.6 and ax = 1.6, 1.8, 2, 2.2 are shown in Fig. 16.

5. Discussion and conclusions

In this study we considered the issue of Gabor filter bank design where the dilations in the x and y directions are
not necessarily the same. When the goal is to provide an adequate representation, it seems that the filter bank should
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Fig. 15. The number of orientations as a function of scale according to Eq. (16). In this case ax � ay , and the number of angles decreases with
scale.

Table 5
The ratio B

A
for the case λ = 0.5 and ax =

1.6

ay
B
A

1.6 1.092
1.8 2.11
2.0 3.72
2.2 4.99

Table 6
The ratio B

A
for the case λx = λy = 0.5 and

ay = 1.6

ax
B
A

1.6 1.092
1.8 1.64
2.0 2.37
2.2 4.31

constitute a frame. We have extended the derivation of Lee for calculating the frame bounds to the case of different
scalings in x and y, and have provided a tool to assess the filter design methodology of Manjunath and Ma.

When the number of orientations is kept constant, an increase in the number of orientations improves the frame
bounds. When the number of orientations was set to sixteen, decreasing the values of either ax or ay results in a
tighter frame. When the scaling in the y direction becomes finer, the overlapping between the filters is smaller, and a
tighter frame, along with better reconstruction results are obtained. When the scaling in the x direction is smaller, the
tessellation resolution in the radial direction increases, and the frame bounds, as well as the reconstruction results are
better.

We have established the dependence of the number of orientations on the scale, in relation with the dilation factors
ax and ay , and provided several different schemes for paving the phase space. We have also noted that the dependence
of the basic orientation in the pavement scheme (i.e., π

2r(m)
) on the ratio ax

ay
resembles the dependence of the orientation

bandwidth on the same ratio in the context of uncertainty [4].
When the value of ax is equal to ay , the number of orientations is constant through scales. When we increase the

value of ay , and ax

ay
< 1, the number of orientations decreases with increasing scale. When we increase the value of ax ,

and ax

ay
> 1, the number of orientations increases with increasing scale. However, we obtain a coarser sampling of the

radial direction in the frequency space. Therefore, an increase in the values of either ax or ay results in a less tight
frame, and poorer reconstruction results.

To conclude, we have established two results concerning a design of affine Gabor-based filter banks. The first
result generalizes the analysis of Daugman and establishes a relationship between the spatial and angular resolutions.
The second generalizes the spatial-frequency analysis of Manjunath and Ma, and the frame bound analysis of Lee
and Daubechies. A new expression for the frame bound in non-equal scaling in the x and y directions is presented.
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Fig. 16. The reconstruction results for ay = 1.6 and ax = 1.6 (top left), 1.8 (top right), 2 (bottom left), 2.2 (bottom right).

A frame tightness criterion for evaluating the design methodology of Gabor wavelets is then suggested and tested
experimentally for several choices of group discretizations and therefore for several different filter banks. Few filter
banks form an almost tight frame and the image reconstruction that is based on these frames is perceptually good.

Appendix A. Calculating the relations among the Gabor wavelets parameters

In this appendix we explicitly calculate the relationships among the parameters of the Gabor wavelets. This analysis
is based on the constraint that the functions touch each other at λ-peak in the frequency space. We denote by Km the
number of orientations in the mth scale.

We prove in this appendix two relations. The first, relates the scaling factor ax , the factor λ and the wave number k:

k = ax + 1

ax − 1

√−2 logλ. (A.1)

The second presents the dependency of the number of orientations on the scale:

π

2r(0)
= arctan

√
− logλ

2k2 + 4 logλ
. (A.2)

First, we would like the zero-level scale filter, ψ̂00, and the first-level scale filter, ψ̂10, both aligned to the same
orientation, to touch at λ-peak. Let us choose, for simplicity and without loss of generality the x-axis, where ν = 0.
Given the explicit form of the two functions:

ψ̂00(ξ, ν) = √
8π exp

(
− (ξ − k)2 + 4ν2

2

)
,

ψ̂10(ξ, ν) = √
8π exp

(
− (axξ − k)2 + 4(ayν)2)

2

)
, (A.3)

we substitute ν = 0 to obtain

ψ̂00(ξ,0) = √
8π exp

(
− (ξ − k)2

2

)
, ψ̂10(ξ,0) = √

8π exp

(
− (axξ − k)2

2

)
. (A.4)
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Next, the maximal value of ψ̂00 is given for ξ = k and ν = 0, thus max |ψ̂00| =
√

8π . We simply search for the value

of ξ that will give us
√

8pi
λ

. First, we look at the λ-peak of ψ̂00:

λ = exp

(
− (ξ − k)2

2

)
. (A.5)

Solving this equation, we obtain

ξ = k ± √−2 log(λ), (A.6)

where the relevant solution is only

ξ = k − √−2 log(λ). (A.7)

Next, we do the same calculation for ψ̂10 to obtain

ξ = k

ax

+
√−2 log(λ)

ax

. (A.8)

As we require that ψ̂00 and ψ̂10 kiss each other at this λ-peak, we obtain

k = ax + 1

ax − 1

√−2 log(λ), (A.9)

as depicted in Eq. (A.1).
The second constraint is that the filter in the zero-level orientation ψ̂00 is tangent to the first-level orientation filter

ψ̂01 at point ν(ξ) = αξ with α = tan π
2r(0)

. Substituting this relation in the following expression:

ψ̂00(ξ, ν) = √
8π exp

(
− (ξ − k)2 + 4ν2

2

)
,

and solving

ψ̂00
(
ξ, ν(ξ)

) = λmax
ξ

|ψ̂00|,
we obtain the constraint

exp

(
− (ξ − k)2 + 4α2ξ2

2

)
= λ. (A.10)

Solving for ξ yields the quadratic equation(
4α2 + 1

)
ξ2 − 2kξ + k2 + 2 logλ = 0. (A.11)

The kissing requirement means that we must have only single solution for this equation. This implies that the discrim-
inant is zero. This gives us Eq. (A.2):

π

2r(0)
= arctan

√
− logλ

2k2 + 4 logλ
. (A.12)

Appendix B. Generalization of Daugman’s uncertainty relationship

In this appendix, we aim at proving the following relationship:

�θ 1
2

= arcsin

(
β

(
ax

ay

)m 2�ω − 1

2�ω + 1

)
. (B.1)

Let β be defined as the aspect ratio between the �x and �y of the 2D Gabor function. Thus, if β = �x
�y

, it is

also true that β = �v
�u

, where �u denotes the frequency bandwidth in the x-direction, and �v denotes the frequency
bandwidth in the y-direction. If the center frequency value of our filter is ω0, then we may write the height of the filter
in the following way: �v = 2ω0 sin(�θ 1

2
).
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Also, the full bandwidth on the x-axis �ω can be described in octaves to be

�ω = log2

[
ω0 + �u

2

ω0 − �u
2

]
,

and so

�u = 2ω0

[
2�ω − 1

2�ω + 1

]
.

Next, we can use these relations to derive a relationship between the filter’s spatial aspect ratio β , the orientation
half-bandwidth �θ 1

2
and the spatial-frequency bandwidth in octaves, �ω as follows:

�θ 1
2

= arcsin

[
β

2�ω − 1

2�ω + 1

]
. (B.2)

When the scaling is the same, the aspect ratio between the x and y dimensions of the filter is constant through scales
and is equal to β . Our generalization of this relationship involves accounting for the different scaling parameters in
the x and y directions, ax and ay , respectively. The aspect ration between the height and width of the filter for the
zero-level scale is equal to β . However, moving to the next scale level the width of the filter changes by a factor ax ,
and its height changes by a factor ay . When we account for this change in the aspect ratio through the scales, we
obtain the general relationship:

�θ 1
2

= arcsin

(
β

(
ax

ay

)m 2�ω − 1

2�ω + 1

)
. (B.3)

Appendix C. Calculating the frame bounds

In this appendix we provide a detailed calculation of the frame bounds, when accounting for the extension of the
similitude (2) group by an independent scaling in the x and y directions.

We prove here Theorem 3.1: The frame bounds for the set {ψm,n,k,l}m,n,k∈Z, l∈Zr
are given by

A = 1

bxby

{
inf
ξ,ν

∑
m∈Z, l∈Z/rZ

F(ξ, ν) −
∑

(p,q)∈Z2\(0,0)

√
β

(
2πp

bx

,
2πq

by

)
β

(
−2πp

bx

,−2πq

by

)}
,

B = 1

bxby

{
sup
ξ,ν

∑
m∈Z, l∈Z/rZ

F(ξ, ν) +
∑

(p,q)∈Z2\(0,0)

√
β

(
2πp

bx

,
2πq

by

)
β

(
−2πp

bx

,−2πq

by

)}
,

where

F(ξ, ν) = ∣∣ψ̂θl

(
am
x ξ, am

y ν
)∣∣2

and

β(s, t) = sup
ξ,ν

∑
m∈Z

∣∣ψ̂θl

(
am
x ξ, am

y ν
)∣∣∣∣ψ̂θl(m)

(
am
x ξ + s, am

y ν + t
)∣∣.

We have to bound the sum of all the contributions of the wavelet responses to the image:

C =
∑

m,n,k∈Z, l∈Z/rZ

∣∣〈f,ψm,n,k,l〉
∣∣2

,

from below and from above. Using Parseval’s theorem we obtain

4π〈f,ψm,n,k,l〉 =
∞∫

−∞

∞∫
−∞

dξ dν f̂ (ξ, ν)a
m
2
x a

m
2
y ψ̂θl

(
am
x ξ, am

y ν
)
eibxam

x nξ eibyam
y kν

=
√

am
x am

y

2π

am
x bx∫
0

2π

am
y by∫
0

dξ dν eibxam
x nξ eibyam

y kνG(ξ, ν), (C.1)
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where

G(ξ, ν) =
∑

h,j∈Z

g

(
ξ + h

2π

am
x bx

, ν + j
2π

am
y by

)

and g(ξ, ν) = f̂ (ξ, ν)ψ̂θl
(am

x ξ, am
y ν) and where we have assumed that bx, by �= 0.

Using Parseval’s formula for periodic functions we obtain:

C =
∑

m∈Z, l∈Z/rZ

am
x am

y

(
2π

am
x bx

)2( 2π

am
y by

)2
[

am
x bx

2π

2π

bxam
x∫

0

dξ
am
y by

2π

2π

byam
y∫

0

dν
∣∣G(ξ, ν)

∣∣2

]

=
∑

h2,j2∈Z

∫
dξ

∫
dν g(ξ, ν)g

(
ξ + 2πh2

am
x bx

, ν + 2πj2

am
y by

)

= 1

bxby

∑
m,n,k∈Z, l∈Z�

∫ ∫
dξ dν f̂ (ξ, ν)f̂

(
ξ + 2π

bx

n, ν + 2π

by

k

)

× ψ̂θl

(
am
x ξ, am

y ν
)
ψ̂θl

(
am
x ξ + 2π

bx

n, am
y ν + 2π

by

k

)
,

where the first equality is by definition, the second comes from the change of variables ξ ′ = ξ + h1
2π

am
x bx

and ν′ =
ν + j1

2π
am
y by

and the third is substitution of the expression for g(ξ, ν).

First we look at the contributions of this expression for n = 0 and k = 0. This is the main contribution and we
follow the notations of Lee who defined this contribution as P :

P = 1

bxby

∫ ∫
dξ dν‖f̂ ‖2

L2(R2)

∑
m∈Z, l∈Z/rZ

∣∣ψθl

(
am
x ξ, am

y ν
)∣∣2

. (C.2)

If we use the definition F(ξ, ν) = ∑
m∈Z, l∈Z/rZ Fml(ξ, ν) = ∑

m∈Z, l∈Z/rZ |ψθl
(am

x ξ, am
y ν)|2 we finally obtain:

P = 1

bxby

∫
dξ

∫
dν‖f̂ ‖2

L2(R2)
F (ξ, ν). (C.3)

As we have created a family of self-similar wavelets, the term F(ξ, ν) should also be self-similar. Lee [13] had
already noted that the various components of the formulas obtained have a self-similar behavior. Especially, he refers
to the function F(ξ, ν) defined in the previous section, which is periodic with the scaling parameter along the radial
direction and with the basic angle along the orientation direction. When the scaling parameters in the x and y directions
are not the same the basic sector may vary in appearance according to the shear operation implied in this different
scaling. See Fig. 17 for a visualization of F . Thus, in order to evaluate its maximal and minimal values it is sufficient
to evaluate its minimal and maximal values in a basic sector which depends on the ax , ay selected.

The second component which accounts for the contributions of all other values of n, k measures the coupling
between the wavelets due to non-orthogonality. It is composed of the sum of all cross products of each wavelet
transform and its spectrally displaced versions. This term, denoted as the residue term, R, is given by

R =
∣∣∣∣∣ 1

bxby

∑
m,n,k∈Z, l∈Z/rZ

∞∫
−∞

dξ

∞∫
−∞

dν f̂ (ξ, ν)f̂

(
ξ + 2πn

am
x bx

, ν + 2πk

am
y by

)

× ψ̂θl(m)

(
am
x ξ, am

y ν
)
ψ̂

(
am
x ξ + 2πn

bx

, am
y ν + 2πk

by

)∣∣∣∣∣,
where the sun does not include the point (n, k) �= (0,0). Under the change of variables ξ̃ = ξ + 2πn

am
x bx

, ν̃ = ν + 2πk
am
y by

we obtain:



Author's personal copy

C. Sagiv et al. / Appl. Comput. Harmon. Anal. 24 (2008) 174–194 193

Fig. 17. The function F(ξ, ν) = ∑ |ψθl(m)(a
m
x ξ, am

y ν)|2 for eight orientations. ax grows from left to right and ay grows from above to bottom.

R � 1

bxby

∑
m,n,k∈Z, l∈Z/rZ

√∫
dξ

∫
dν

∣∣f̂ (ξ, ν)
∣∣2∣∣ψ̂θl

(
am
x ξ, am

y ν
)∣∣∣∣∣∣ψ̂θl

(
am
x ξ + 2πn

bx

, am
y ν + 2πk

by

)∣∣∣∣
×

√∫
dξ̃

∫
dν̃

∣∣f̂ (ξ̃ , ν̃)
∣∣2∣∣ψ̂θl

(
am
x ξ̃ , am

y ν̃
)∣∣∣∣∣∣ψ̂θl

(
am
x ξ̃ − 2πn

bx

, am
y ν̃ − 2πk

by

)∣∣∣∣.
Using the Cauchy–Schwartz inequality, we get:

R � 1

bxby

∑
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∫
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∫
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β

(
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n,
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k
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β

(
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, (C.4)

where

β(s, t) = sup
ξ,ν

∑
m∈Z, l∈Z/rZ

∣∣ψ̂θl(m)

(
am
x ξ, am

y ν
)∣∣∣∣ψ̂θl(m)

(
am
x ξ + s, am

y ν + t
)∣∣. (C.5)

The term β demonstrates the same self-similarity of F and therefore can be calculated on the basic section which
is defined per a pair (ax, ay).

Finally, the frame bounds A and B are obtained using:

A = 1

bxby

{
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∑
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,

B = 1
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(
2πp
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,
2πq

by

)
β

(
−2πp
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,−2πq
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)}
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