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Abstract. Gabor feature space is elaborated for representation, process-
ing and segmentation of textured images. As a first step of preprocessing
of images represented in this space, we introduce an algorithm for Gabor
feature space denoising. It is a geometric-based algorithm that applies
diffusion-like equation derived from a minimal weighted area functional,
introduced previously and applied in the context of stereo reconstruction
models [6,12]. In a previous publication we have already demonstrated
how to generalize the intensity-based geodesic active contours model to
the Gabor spatial-feature space. This space is represented, via the Bel-
trami framework, as a 2D Riemannian manifold embedded in a 6D space.
In this study we apply the minimal weighted area method to smooth
the Gabor space features prior to the application of the geodesic active
contour mechanism. We show that this ”Weighted Beltrami” approach
preserves edges better than the original Beltrami diffusion. Experimental
results of this feature space denoising process and of the geodesic active
contour mechanism applied to the denoised feature space are presented.

Keywords: Gabor analysis, Geometric-based algorithms, Geodesic ac-
tive contours, Beltrami framework, Anisotropic diffusion, image mani-
folds, minimal weighted area method.

1 Introduction

Textured image segmentation is an important issue in image analysis. However,
real world textures are difficult to model. Among the approaches to the analysis
of textures are local geometric primitives [9], local statistical features [3], random
field models [8,4] and the FRAME theory [23] which combines filtering theory
and Markov random field modeling through the maximum entropy principle.
Another approach, based on the human visual system has emerged, in which
texture features are extracted using Gabor filters [19].

The motivation for the use of Gabor filters in texture analysis is double fold.
First, it is believed that simple cells in the visual cortex can be modeled by Gabor
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functions [16,5], and that the Gabor scheme provides a suitable representation
for visual information in the combined frequency-position space [18]. Second, the
Gabor representation has been shown to be optimal in the sense of minimizing
the joint two-dimensional uncertainty in the combined spatial-frequency space
[7]. The analysis of Gabor filters was generalized to multi-window Gabor filters
[24] and to Gabor-Morlet wavelets [18,24,17,15], and studied both analytically
and experimentally on various classes of images [24].

A great deal of attention has been devoted in recent years to the ”snakes”, or
active contour models, which were proposed by Kaas et al [10] for intensity based
image segmentation. In this framework an initial contour is deformed towards the
boundary of an object to be detected. The evolution equation is derived from
minimization of an energy functional, which obtains a minimum for a curve
located at the boundary of the object. A major drawback of the classical snakes
algorithm is its dependence on the parameterization of the curve. This may
actually lead to different results for different choices of parameterization.

The geodesic active contours model [2,11] offers a different perspective for
solving the boundary detection problem; It is based on the observation that
the energy minimization problem is equivalent to finding a geodesic curve in a
Riemannian space whose metric is derived from image contents. The geodesic
curve can be found via a parameterization invariant geometric flow. Utilization
of the Osher and Sethian level set numerical algorithm [20] allows automatic
handling of changes of topology.

It was shown recently that the Gaborian spatial-feature space can be de-
scribed, via the Beltrami framework [22], as a 4D Riemannian manifold [13]
embedded in IR6. Based on this approach, the intensity based geodesic active
contours method was generalized to the Gabor-feature space of images [21]. It
was shown that the geodesic snakes mechanism can be used for texture segmen-
tation when applied to the Gabor spatial feature space of images rather than
the intensity images themselves. The metric introduced in the Gabor space was
used to derive the inverse edge indicator function E, which attracts in turn the
evolving curve towards the boundary in the geodesic snakes schemes. Once the
Gabor feature space of an image is derived, the scale and orientation for which
the maximum amplitude of the transform was obtained are kept for each pixel.
Thus, for each pixel, the maximum value of the Gabor transform coefficient and
the orientation and scale that yield this maximum value are obtained. This ap-
proach results in a 2D manifold embedded in a 6D space. It was shown that
using this approach the geodesic snakes yield good results when the textures are
homogeneous and can be characterized by these maximum values.

However, the maximum values provide only partial information regarding
image structure in the full Gabor feature space. This may, in turn, generate
less than satisfactory results in case of more complex textures. One solution
to this problem is to apply the geodesic snakes mechanism to the complete
Gabor feature space and interpret the Gabor transform of an image as a function
assigning for each pixel’s coordinates, scale and orientation, a value. Thus, the
Gabor transform of an image may be viewed as a 4D manifold embedded in IR6.
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An alternative solution is to improve the results obtained from the 2D manifold
embedded in 6D space approach which we aim to achieve here.

We apply the weighted area minimization method to improve the results for
the orientations which were determined by searching for the maximum value of
the Gabor coefficients. We show that it better preserves edges than the Beltrami
smoothing operator.

This paper is organized as follows: In section 2 we briefly review the Bayesian
formulation in the context of image processing. In section 3 we describe the
geodesic active contours method for intensity images. Next, in section 4 we de-
scribe the generation of the Gabor feature space. In section 5 we show how to
apply the geodesic snakes mechanism in the Gabor feature space. In section 6
we describe the weighted area minimization method, and finally in section 7, we
provide some preliminary results.

2 Bayesian Formulation

The Bayesian approach is useful in finding a compromise between the require-
ments of fidelity of a given image data, and our a priori knowledge or assump-
tions regarding the nature of “true” images. Accordingly, we consider an image
to be made of an ensemble of interacting systems–i.e. pixels, wherein the gray
level of each pixel is a realization of a random process. In other words, the gray
level of each pixel is drown from a probability distribution that depends on the
value of the given noisy image, as well as on a priori information reflecting as-
sumptions about the structure and properties of natural images. For example,
and in particular, the smoothness assumption can be interpreted as the “mean
free path” of interactions among the above-mentioned pixel generating systems,
resulting in some kind of a weighted averaging in a neighborhood of the pixel.
The likelihood of an image, given the noisy data set of an image, is obtained by
multiplication of the likelihood functions of all the pixels’ gray levels. Given a
pixel at the coordinates (xi, yi), according to Bayes rule

Pxiyi(I(xi, yi)|I0(xi, yi)) =
Pxiyi(I0(xi, yi)|I(xi, yi))Pxiyi(I(xi, yi))

Pxiyi(I0(xi, yi))
, (1)

and
P (I|I0) =

∏
i,j∈N×N

Pxiyi
(I(xi, yi)|I0(xi, yi)), (2)

where N is the size of the image, and in the left hand side of both (1) and (2) we
have the posteriori probability distribution of either a pixel value (eq. 1) or of
the entire image (eq. 2) that we wish to compute; Namely the probability of the
gray value I(xi, yi) (or of I), given the data I0(xi, yi) (or I0). This distribution
is calculated in the right hand side of both (1) and (2) as the probabilities
of measuring I0(xi, yi) (or of I0), given the “true” image, multiplied by the
probability of I(xi, yi) (I) being the true image. In other words, this second term
reflects our prior assumption on the distribution of I(x, y). The denominator
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depends only on I0(xi, yi) and therefore does not affect the optimization process
of I(x, y).

One often assumes a Gibbsian distribution, in which case the conditional
probability becomes

Pxy(A|B) = exp(−αe(A,B)).

where e(A,B) is an “energy density”. Given this type of conditional probability
equation (2) becomes

P (I|I0) =
∏

i,j∈N×N

Pxiyi
(I0(xi, yi)|I(xi, yi))Pxiyi(I(xi, yi))

Pxiyi(I0(xi, yi))

= exp(−α
∫

(e(I, I0) − e(I0)) dxdy). (3)

Determining which is the image that maximizes the posteriori probability, is
equivalent to the selection of the image that minimizes the energy.

Our study generalizes this framework of the statistical approach to images, by
considering the probability distribution of texture features and not only (and in
the examples given herewith not at all) of the pixels’ gray levels. We also choose
somewhat non-standard fidelity term and smoothing term. A special form is as-
sumed such that the two terms collapse into one. The technique is borrowed from
recent results in stereo reconstruction models [6,12] and our prior assumption is
that textures (and/or other image features) are piecewise uniform.

3 Geodesic Active Contours

In this section we review the geodesic active contours method for non-textured
images [2]. The generalization of the technique for texture segmentation is de-
scribed in section 4.

Let C(q) : [0, 1] → IR2 be a parametrized curve, and let I : [0, a] × [0, b] →
IR+ be the given image. Let E(r) : [0,∞[→ IR+ be an inverse edge detector, so
that E approaches zero when r approaches infinity. Visually, E should represent
the edges in the image. Minimizing the energy functional proposed in the clas-
sical snakes is generalized to finding a geodesic curve in a Riemannian space by
minimizing:

LR =
∫

E(|∇I(C(q))|) |C′(q)|dq. (4)

We may see this term as a weighted length of a curve, where the Euclidean
length element is weighted by E(|∇I(C(q))|). The latter contains information
regarding the boundaries within the image. The resultant evolution equation is
the gradient descent flow:

∂C(t)
∂t

= E(|∇I|)kN − (∇E · N) N, (5)

where k denotes curvature.
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If we now define a function U , so that C = ((x, y)|U(x, y) = 0), we may use
the Osher-Sethian Level-Sets approach [20] and replace the evolution equation
for the curve C, with an evolution equation for the embedding function U :

∂U(t)
∂t

= |∇U |Div
(
E(|∇I|) ∇U

|∇U |
)
. (6)

A popular choice for the stopping function E(|∇I|) is given by:

E(|∇I|) =
1

1 + |∇I|2 ,

however, other image-specific functions may be used.

4 Feature Space and Gabor Transform

The Gabor scheme and Gabor filters have been studied by numerous researchers
in the context of image representation, texture segmentation and image retrieval.
A Gabor filter centered at the 2D frequency coordinates (U, V ) has the general
form of:

h(x, y) = g(x′, y′) exp(2πi(Ux+ V y)) (7)

where
(x′, y′) = (x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ)), (8)

g(x, y) =
1

2πσ2
exp

(
− x2

2λ2σ2
− y2

2σ2

)
, (9)

λ is the aspect ratio between x and y scales, σ is the scale parameter, and the
major axis of the Gaussian is oriented at angle φ relative to the x-axis and to
the modulating sinewave gratings.

Accordingly, the Fourier transform of the Gabor function is:

H(u, v) = exp
(
−2π2σ2((u′ − U ′)2λ2 + (v′ − V ′)2)

)
(10)

where, (u′, v′) and (U ′, V ′) are rotated frequency coordinates. Thus, H(u, v) is
a bandpass Gaussian with its minor axis oriented at angle φ from the u-axis,
and the radial center frequency F is defined by: F = U2 + V 2, with orientation
θ = arctan(V/U). Since maximal resolution in orientation is desirable, the filters
whose sinewave gratings are cooriented with the major axis of the modulating
Gaussian are usually considered (φ = θ and λ > 1), and the Gabor filter is
reduced to: h(x, y) = g(x′, y′)exp(2πiFx′).

It is possible to generate Gabor-Morlet wavelets from a single mother-Gabor-
wavelet by transformations such as: translations, rotations and dilations. We can
generate, in this way, a set of filters for a known number of scales, S, and orienta-
tions K. We obtain the following filters for a discrete subset of transformations:
hmn(x, y) = a−mh( x′

am , y′

am ), where (x′, y′) are the spatial coordinates rotated by
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πn
K and m = 0...S − 1. Alternatively, one can obtain Gabor wavelets by loga-
rithmically distorting the frequency axis [18] or by incorporating multiwindows
[24]. In the latter case one obtains a more general scheme wherein subsets of the
functions constitute either wavelet sets or Gaborian sets.

The feature space of an image is obtained by the inner product of this set of
Gabor filters with the image:

Wmn(x, y) = Rmn(x, y) + iJmn(x, y) = I(x, y) ∗ hmn(x, y). (11)

5 Application of Geodesic Snakes
to the Gaborian Feature Space of Images

The proposed approach enables us to use the geodesic snakes mechanism in the
Gabor spatial feature space of images by generalizing the inverse edge indicator
function E, which attracts in turn the evolving curve towards the boundary in
the classical and geodesic snakes schemes. A special feature of our approach is
the metric introduced in the Gabor space, and used as the building block for the
stopping function E in the geodesic active contours scheme.

Sochen et al [22] view images and image feature space as Riemannian man-
ifolds embedded in a higher dimensional space. For example, a gray scale im-
age is a 2D Riemannian surface (manifold), with (x, y) as local coordinates,
embedded in IR3 with (X,Y, Z) as local coordinates. The embedding map is
(X = x, Y = y, Z = I(x, y)), and we write it, by abuse of notations, as (x, y, I).
When we consider feature spaces of images, e.g. color space, statistical moments
space, and the Gaborian space, we may view the image-feature information as
a N -dimensional manifold embedded in a N + M dimensional space, where N
stands for the number of local parameters needed to index the space of interest
and M is the number of feature coordinates. For example, we may view the Gabor
transformed image as a 2D manifold with local coordinates (x,y) embedded in a
6D feature space. The embedding map is (x, y, θ(x, y), σ(x, y), R(x, y), J(x, y)),
where R and J are the real and imaginary parts of the Gabor transformed image,
and θ and σ as the direction and scale for which a maximal response has been
achieved. Alternatively, we can represent the Gabor transform space as a 4D
manifold with coordinates (x, y, θ, σ) embedded in the same 6D feature space.
The embedding map, in this case, is (x, y, θ, σ,R(x, y, θ, σ), J(x, y, θ, σ)). The
main difference between the two approaches is whether θ and σ are considered
to be local coordinates or feature coordinates.

A basic concept in the context of Riemannian manifolds is distance. Con-
sider, for example, we take a two-dimensional manifold Σ with local coordinates
(σ1, σ2). Since the local coordinates are curvilinear, the distance is calculated
using a positive definite symmetric bilinear form called the metric whose com-
ponents are denoted by gµν(σ1, σ2):

ds2 = gµνdσ
µdσν , (12)

where we used the Einstein summation convention: elements with identical su-
perscripts and subscripts are summed over.
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The metric on the image manifold is derived using a procedure known as
pullback. The manifold’s metric is then used for various geometrical flows. We
shortly review the pullback mechanism. More detailed information can be found
in [22].

Let X : Σ → M be an embedding of Σ in M , where M is a Riemannian
manifold with a metric hij and Σ is another Riemannian manifold. We can use
the knowledge of the metric on M and the map X to construct the metric on
Σ. This pullback procedure is as follows:

(gµν)Σ(σ1, σ2) = hij(X(σ1, σ2))
∂Xi

∂σµ

∂Xj

∂σν
, (13)

where we used the Einstein summation convention, i, j = 1, . . . , dim(M), and
σ1, σ2 are the local coordinates on the manifold Σ.

If we pull back the metric of a 2D image manifold from the Euclidean em-
bedding space (x,y,I) we get:

(gµν(x, y)) =
(

1 + I2x IxIy

IxIy 1 + I2y

)
. (14)

The determinant of gµν yields the expression: 1+Ix
2+Iy

2. Thus, we can rewrite
the expression for the stopping term E in the geodesic snakes mechanism as
follows:

E(|∇I|) =
1

1 + |∇I|2 =
1

det(gµν)
.

We may interpret the Gabor transform of an image as a function assigning to each
pixel’s coordinates, scale and orientation, a value (W). Next, we get the scale and
orientation for which we have received the maximum amplitude of the transform
for each pixel. Thus, for each pixel, we obtain: Wmax, the maximum value of the
transform, θmax and σmax – the orientation and scale that yielded this maximum
value. This approach results in a 2D manifold (with local coordinates (x, y))
embedded in a 6D space (with local coordinates (x, y,R(x, y), J(x, y), θ(x, y),
σ(x, y)). If we use the pullback mechanism described above we get the following
metric:

(gµν) =
(

1 +R2
x + J2x + σ2x + θ2x RxRy + JxJy + σxσy + θxθy

RxRy + JxJy + σxσy + θxθy 1 +R2
y + J2y + σ2y + θ2y

)
(15)

We use the fact that the determinant of the metric is a positive definite edge
indicator to determine E as the inverse of the determinant of gµν . Here gµν is
a function of the two spatial variables only x and y, therefore, we obtain an
evolution of a 2D manifold in a 6D embedding space.

6 Smoothing of the Orientation Data by Application
of the Weighted Area Minimization Method

In the previous section we have described how the Gabor feature space can
be treated as a 2D manifold embedded in 6D space. We have used a maximum
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criterion to obtain a single orientation and scale for each pixel location. However,
this information does not always well represent the textural information and is
sensitive to local variations in the texture characteristics. Therefore, the resultant
orientation data can be quite noisy. Also, some random noise can deteriorate the
resultant data. Our aim is to reduce the amount of noise in the orientation data
and obtain a smoother function to be used in the geodesic snakes mechanism.

We obtain the Gabor feature coefficients as a function of x, y, θ(x, y) and
σ(x, y). This discussion is devoted to the manipulation of θ, therefore we select
a single scale σ and generate a set of Gabor filters for that scale, which differ
in their orientation. Thus, the generated Gabor feature space is a function of
x, y, θ(x, y). Our aim is to reduce the amount of noise in θ, whether its source is
a heterogeneous texture or some random noise. We define an energy functional
which minimizes the magnitude of the Gabor coefficients function weighted by
an area element determined by x, y, θ(x, y).

S(θ) =
∫

D(x, y, θ)
√
g(θx, θy)dxdy (16)

where
D(x, y, θ) =

1
(R2 + J2 + c)

is a data fidelity term and g is the determinant of

(gµν) =
(

1 + θ2x θxθy

θxθy 1 + θ2y

)
. (17)

The combination
√
gdxdy, an area element of the orientation manifold (x, y,

θ(x, y)), is the term that forces smoothing as the orientation field reduces its
overall area when it flows towards the optimal solution. For trivial data term
the gradient descent process is the Beltrami flow that ignores any data edges
that are not already very pronounced in the initial noisy guess. On the other
hand a trivial metric for the orientation manifold results in decoupling of the
different orientation values in different locations as the metric is the only place
where derivatives of θ may appear. This decoupling leads to a simple solution:
At each pixel the orientation for which maximum response is achieved is chosen.
As we have noted above this leads to a noisy solution that may undermine the
correctness of the segmentation process.

The constant c in the denominator has two roles: The first role is merely
numeric, to avoid division in zero. The second role has a geometrical meaning
since this constant determines the convergence properties of our scheme. If this
constant is very small, the evolution depends more on the values of the Gabor
transform, (R2+J2), and the smoothing of θ is less dominant. If the constant is
very large compared with the values of the Gabor transform, then they are less
dominant in the evolution, and the smoothing of θ is the same as in the Beltrami
scheme.

Considering the Bayesian formulation we notice that we may rewrite the en-
ergy density as e = (D − const)

√
g + const

√
g. We note that the first term is
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a fidelity term that forces θ to align according to the orientation in the noisy
original image while the second term pushes towards a minimal surface solution.
Note that the

√
g in the first term means that the fidelity term is to be thought

of as a function on the orientation manifold. Choosing the same constant for
both terms leads to the functional S written above. Note that we do indeed
generalize the formalism by considering features, i.e. orientations in this specific
implementation, rather than intensity. Our assumption is that images are piece-
wise continuous with respect to all the relevant image features/attributes. In the
case of textureless images, i.e. gray level only, this continuity becomes identical
to smoothness.

Thus, we process the manifold θ(x, y), while obtaining the maximum value for
the Gabor coefficients, so that the contribution and impact of each component
leads to satisfactory result.

Using the Euler-Lagrange method we obtain the following equation:

δS

δθ
= −div

( ∇θ

(R2 + J2)(x, y, θ(x, y))
√
g

)
− (R2 + J2)θ(x, y, θ(x, y))

√
g

(R2 + J2)2(x, y, θ(x, y))
(18)

According to the steepest descent method the evolution equation for θ is:

θt = −δS

δθ
(19)

7 Results and Discussion

The Beltrami flow, being a nonlinear diffusion scheme, offers advantages in pro-
cessing and analysis of images compared with linear diffusion. In the context of
the present study it preserves edges more accurately. We use a similar approach
to the Beltrami flow, where the Gaborian orientation data, θ, is treated as a 2D
manifold embedded in 3D space, (x, y, θ). Our aim is to smooth the orientation
information when accounting for the maximal Gabor coefficients obtained. Fol-
lowing the minimal weighted area diffusion, we can use θ as the input to the
geodesic snakes algorithm. Geodesic snakes is an efficient geometric flow scheme
for boundary detection, where the initial conditions include an arbitrary function
U which implicitly represents the curve, and a stopping term E which contains
the information regarding the boundaries in the image. We generalize the defi-
nition of gradients, usually considered in the context of intensity gradients over
(x, y) to other possible gradients in scale and orientation. This gradient infor-
mation is the input function E to the newly generalized geodesic snakes flow.

Next, we present the results of the minimal weighted area method compared
to the Beltrami scheme. [For the complete set of full size images and a demo see
the web-page: http://www-visl.technion.ac.il/emmcvpr2001].

In this study we have generated the Gabor wavelets for eight orientations,
the scale being kept constant. In the geodesic snakes mechanism U was initiated
to be a signed distance function [2].
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Fig. 1. An image of textures taken from the Brodatz album of textures [1]. The circular
object is generated from the background texture after rotation by 30 degrees.

The first image (Fig. 1) is taken from the Brodatz album of textures [1].
The circular object is generated from the background texture by rotating it
by 30 degrees. We apply the Gabor transform to this image and obtain the
maximal values of the Gabor coefficients per pixel, and the orientation for which
the maximal values were obtained. In figure (2(a)) we see that the orientation
information is a piece-wise constant function and that it clearly captures the
boundary between object and background. In figure (2(b)) we see the orientation
information after random noise was added to it. When the Beltrami flow is
applied to the noisy orientation image, if the edges are to be better preserved,
we should compromise on the degree of smoothing of the background, as can
be seen in figure (2(c)). If further smoothing is desired, the edges are smeared
(Fig. 2(d)). When the Gabor coefficients are accounted for, we obtain a high
degree of smoothing while preserving the sharpness of the edges (Fig. 2(e)).

The inter-relations between the Beltrami flow and the weight of the Gabor
coefficients can be seen in the next example. By changing the constant value in
the denominator from values larger than the mean value of R2 + J2 (equivalent
to the Beltrami flow) to smaller than the mean value we control the impact of
the Beltrami numerator to the Gabor denominator.

The second image is similar to the first one, however, here the rotation is
done by 45 degrees (Fig. 3). In figure (4(a)) we see the relevant orientation data
after application of the Gabor transform and obtaining the maximal values of
the Gabor coefficients per pixel. As we did before, we add random noise to the
orientation information (4(b)), and apply the smoothing procedures to remove it.
Next, we evaluate the effect of changing the constant value. When the constant
is big in comparison to the average value of R2 + J2, the weighted minimal
area method is equivalent to the Beltrami flow (Fig. 4(c)). As we decrease this
constant the impact of the Gabor coefficients is more evident and we obtain
the same degree of smoothing without damaging the edges (Fig. 4(d,e)) . This
is because the weighing of the Gabor coefficients in the Beltrami flow tends
to keep the edges better than when applying the original Beltrami flow, where
the only constraint is on the smoothing of the θ manifold. However, when the
constant value is in the range of R2+J2, the Gabor coefficients are very dominant
comparing to the smoothing of the θ manifold, and the evolution of θ can be
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Fig. 2. a. The original orientation information following the application of the Gabor
transform and using the maximum criteria (top left). b. The orientation information
following addition of random noise (top right). c. Results of the Beltrami diffusion
when the process is halted so that significant edges are still evident (middle left). d. If
further smoothing is desired, the edges are smeared when the Beltrami diffusion is
applied (middle right). e. The result obtained following application of the minimal
weighted area method (bottom).

Fig. 3. This image is taken from the Brodatz album of textures [1]. The circular object
is generated from the background texture by rotating it by 45 degrees.
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Fig. 4. a. The original orientation information following the application of the Gabor
transform and using the maximum criteria (top left). b. The orientation information
following addition of random noise (top right). The results of application of the weighted
minimal area method are presented, where the mean value of R2 + J2 is about 200.
The difference between the results is the value of the constant in the denominator. c. c
=10,000 (middle left). d. c = 800 (middle right). e. c = 600 (bottom left). f. c = 200
(bottom right).

Fig. 5. This image is a synthesized texture composed of linear combination of spatial
sinewave gratings of different orientations where some random noise was added to it.
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Fig. 6. The maximal values of the Gabor coefficients per pixel are obtained along with
the relevant orientation information. a. The magnitude of the Gabor coefficients (left).
b. The orientation information (right).

led to local minima. This is manifested in the white dots that appear when the
constant is equal to 200 (Fig. 4(f)).

In the next example, we demonstrate how the different smoothing processes
affect the results of the geodesic snakes mechanism. The original image is a
synthesized texture composed of linear combination of spatial sinewave gratings
of different orientations where some random noise was added to it (Fig. 5).

After application of the Gabor filters the maximal value of the Gabor coef-
ficients per pixel is calculated (Fig. 6(a)) and the orientation image obtained is
noisy (Fig. 6(b)). When the Beltrami flow is applied to the noisy orientation im-
age we obtain a smooth result (Fig. 7(a)). However, the edges are more dominant
when the Gabor coefficients are accounted for (Fig. 7(b)).

Next we use the smoothed θ obtained to calculate the stopping term E in the
geodesic snakes mechanism. The stopping term obtained following the Beltrami
diffusion is seen in figure (7(c)), and the one obtained following the minimal
weighted area method can be seen in figure (7(d)). The resultant boundaries
obtained can be seen in figure (7(e+f)). The most evident difference between
the two results can be seen on the top right hand side of the boundaries. It is
clear that using the minimal weighted area method the edges are better captured
and detected.

Currently we expand this study to the other Gaborian features, such as the
scale parameter σ and the sine grating frequency F . We explore the behavior of
each parameter when considered separately, and also the coupling between these
parameters. Another natural continuation of this work is to apply the results of
Kimmel and Sochen [14] in order to obtain a more robust orientation diffusion
where the orientations manifold is embedded in R2 ⊗ S1. By properly choosing
the local coordinate systems for both manifolds the problem arising from the
cyclic nature of angles is addressed.
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