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ABSTRACT

Signal and image enhancement in the presence of noise is
considered in the context of the scale-space approach. A
modified dynamic process, based on the action of an
adaptive diffusion equation, is presented. The nonlinear
diffusion coefficient is locally adjusted according to image
features such as edges, textures and moments, and, as
such, can also reverse its sign, i.e. switches from a forward
to a backward (inverse) diffusion process according to a
given set of criteria. This results in a generalized forward-
and-backward adaptive diffusion process that enhances
features such as transients and singularities in the one-
dimensional case, and edges in images, while locally
denoising smoother segments of the signal or image.
Advantages afforded by the generalized adaptive diffusion
process are illustrated by examples of both one-
dimensional signals and images.

1. ENHANCEMENT BY DIFFUSION
PROCESSES

The scale-space approach and partial differential equations
(PDE) techniques have been extensively applied to signal
and image processing over the last decade. As Witkin [1]
had pointed out, the diffusion process (or heat equation) is
equivalent to a smoothing process with a Gaussian kernel.
Indeed, the fundamental solution of the standard, linear,
diffusion equation

(1) u,=cV?u

is a Gaussian function with a characteristic spread
(standard deviation) that is proportional to . A major
drawback of such a linear framework is its uniform
filtering of local signal features and noise. This was

addressed by Perona and Malik (P-M) [2], who proposed a
process known as nonlinear anisotropic diffusion, where
diffusion can take place with a variable conductance in
order to control the smoothing effect as follows:

(2) u, =div(c(|Vul)Vu)  ,c>0

where C is a decreasing function of the gradient.

A close inspection of the P-M diffusion process reveals
that it is isotropic but non-homogeneous [10]. Genuine
anisotropic processes were suggested recently by Sochen,
Kimmel, Malladi [8]. The application of the Beltrami
diffusion equation to resolution enhancement of colored
images was discussed by Sochen and Zeevi [13].

The conductance coefficient in the Perona-Malik
process was chosen to be a decreasing function of the
gradient of the signal. This operation selectively lowpass
filters regions that do not contain large gradients
(singularities as a step jump or an edge in the case of an
image). However, as was proven by Catte et al. [3], this
results in an ill-posed diffusion equation. Catte et al.
therefore proposed a regularized version, where the
coefficient is a function of a smoothed gradient.

According to the "Minimum-Maximum" principle no new
local minima or maxima should be created at any time in
the 1D case, in order not to produce artifacts in the
diffused signal. Moreover, the values of the global
minimum and maximum along the evolution of the signal
in time are bounded by that of the initial state Uy(at t=0) in
any dimension. These conditions are obeyed by the P-M
and most other anisotropic diffusion processes introduced
in image processing. This guaranties stability of the PDE
and avoids explosion of the nonlinear diffusion process.



In signal enhancement/restoration, we do not want to
restrict ourselves to the global minimum and maximum of
the initial signal. On the contrary, we would like the points
of extrema to be emphasized (if they indeed represent
signal singularities and are not generated by noise).
Therefore, a different approach should be considered.

As we want to emphasize large gradients, we would like to
move “mass” from the lower part of a “slope” upwards.
This process can be viewed as moving back in time along
the scale space, or reversing the diffusion process [10].
Mathematically we can simply change the sign of the
diffusion (conductance) coefficient to negative. Note that
this is different than what was defined as "inverse
diffusion" in previous studies (e.g. [3],[6]). There, in
places where the derivative of the flux c-grad(u) was
negative, it was defined as inverse diffusion, because one
can write the diffusion equation near that point as:

3) u,=-du ,d>0

Although it has the form of an inverse diffusion process, it
is weaker since it does not have the important inverse
diffusion property of moving signal or image “particles”,
using our metaphorical language, upward along the slope
of the gradient. With positive coefficient C, this could
never happen, and therefore the minimum-maximum
principal is not violated. Thus, signal enhancement
requires further modification of the diffusion process.
Specifically, to deblur an image and enhance singularities
and edges, negative diffusion coefficient must be
incorporated into the process.

The question is, can we simply use a linear inverse
diffusion? This is obviously a highly unstable process. As
mentioned earlier, the linear forward diffusion is analogous
to convolution with a Gaussian kernel. Hence, the linear
backward (inverse) diffusion is analogous to a Gaussian
deconvolution, where the noise amplification explodes
with frequency. Application of such a deconvolution
process results in oscillations that grow with time until the
original signal is completely lost.

To deal with this problem, three major issues must be
addressed: The explosive instability, noise amplification
and oscillations.

One way to overcome the inherent instability is by
diminishing the value of the inverse diffusion coefficient at
high gradients. In this way, after the singularity exceeds a
certain gradient threshold it no longer affects the process.
We can also terminate the diffusion process after a limited
time, before reaching saturation.

To reduce the effect of noise, which after some pre-
smoothing, can be regarded as having mainly medium to

low gradients, we eliminate the inverse diffusion force at
low gradients.

To reduce oscillations, we suppress them the minute they
are introduced, by combining a forward diffusion force that
smoothes low gradients. This smoothes also some of the
original noise. However, low gradients of the signal, like
those that are characteristic of certain textures in images,
are also affected and smoothed out by this force.

Thus, we basically need two opponent diffusion forces
acting simultaneously on the signal - a backward force (at
medium gradients, where singularities are expected), and a
forward one, used for stabilizing oscillations and reducing
noise. Actually, we can combine these two forces in one
complex forward-and-backward diffusion force with a
diffusion coefficient (which is a function of the gradient)
that varies continuously from positive to negative values.

In order to avoid smoothing out important features of the
image such as textures, we should ideally have a local
feature detector that will slow down the diffusion process
in the vicinity of important features.

2. NEW CONDUCTANCE COEFFICIENT

We further extend and generalize the nonlinear PDE-based
filtering method, and apply it as a combined feature-based
enhancement and denoising mechanism. We minimize the
effect of noise, which is inherently a byproduct of signal
enhancement, by our generalized forward-and-backward
diffusion processes. Moreover, important features are not
filtered out by the forward diffusion process, enabling a
different image processing mechanism to enhance them at
a later stage, whenever it is necessary.

We propose a general feature enhancer-denoiser: Let

c(x,y) = c(fps fornf)

estimators f, = f,(x,») , i =1,..,n can be selected from

where the local feature

a broad range of choices introduced in the fields of image
processing and computer vision like: edge detectors
(already introduced implicitly under the gradient criterion),
noise estimators, texture, scale, orientation, local power-
spectrum, moments estimators etc. The logic dictating the
conductance coefficient ¢ should be as follows: Forward
diffuse features that should be filtered out because they are
corrupted by noise and are of no importance to the image
nature; backward diffuse features that should be enhanced,
and avoid diffusion where either diffusion processes
(forward or backward) would distort important features.

In cases where there is some a priori knowledge of the
type of images to be processed, the diffusion process could
be much better controlled.



To illustrate this feature-dependant diffusion, consider the
example of an urban scene primarily comprised of
buildings. In this case one would like to preserve most
vertical and horizontal lines and edges, significant wall
textures and additional dominant edges at all orientations.
To incorporate these requirements into our diffusion
process, let us define by the symbols e.(x,y), e(x,y),
eq(x,y), em(x,y) the local estimators that stand for edges,
wall  textures, vertical-lines and horizontal-lines,
respectively. An appropriate conductance coefficient for
the process is, in this case, given by:

1
(4) c(ee s el > evl s 6/1[) = >
I+we, +we +wye, +w,e

vh-vh

where w, denotes the relative weight required to balance
the desired effect of each estimator. In this simplified
example, it is clear that the diffusion process will slow
down considerably whenever at least one of the weighted
estimators is much larger than 1

(we, >>1 , xe{etvlvh}). In other areas of the

image a stronger forward diffusion will reduce the noise.

A more detailed and explicit example of our generalized
inhomogeneous diffusion is an enhancement and denoising
process based on an edge indicator function. Let s be an
edge indicator. The adaptive process’ diffusion coefficient
is then defined as follows:

1-(s/k ;)" 0< s <k,
(5) cfs) = Ja{((s-k, )w)"-1} Lk, —w<s < k, +w
0 , otherwise

The parameter k; < k;-w is essentially the limit of gradients
to be smoothed out, where k; and w define the range of the
backward diffusion, and should take values of gradients
that we want to emphasize. In our formula the range is
symmetric, and we restrain the width from overlapping the
forward diffusion area.

The parameter alpha controls the ratio between the
backward and forward diffusion. If the backward diffusion
process is too dominant, the stabilizing forward process
does not avoid oscillations. One can avoid the
development of new singularities in very smooth areas in
the 1D case by bounding the maximum flux permissible in
the backward diffusion to be less than the maximum of the
forward one [for a proof see [11]]. Formally we say:

{s-c(s)}

(6) max{s-c(s)}> max
s<kf kb—w<s<kb+w

In the case of our proposed coefficient, we get a simple
formula for alpha, which just obeys this inequality by:

(7) a=k,/2k, .forany 0<w<k, -k,

In practical applications, this bound can usually be
increased up to a double value without experiencing large
instabilities. The exponent parameters n, m were chosen to
be n=4, m=1.

The smoothed version of (5) is:
(®) ¢,(s) = c(5)®G,(s),

where ® denotes convolution and G, is a Gaussian with
standard deviation o.

As an edge indicator one may use the absolute value of the
gradient. A more robust version is obtained by convolving
it with a Gaussian, i.e. s = VI | or s =G, ®VI|.

The diffusion coefficient has to be continuous and
differentiable. In the discrete domain, (5) could suffice
(although it is only piecewise differentiable), whereas (8)
can fit the general continuous case. Other formulae with
similar nature may also be proposed.

One way of choosing the parameters of the diffusion
coefficients in the discrete case, is by calculating the mean
absolute gradient (MAG). Local adjustment of the
parameters, can be done by calculating the MAG value
within a window. The parameters change gradually along
the signal, and enhancement is accomplished by different
thresholds in different locations. This is indeed required in
the cases of natural signals or images (Fig. 2), due to their
nonstationary structure.

There are a few ways to incorporate regularity into this
PDE-based approach. One can replace the proposed
conductance coefficient Eq. (5) by the regularized one, Eq.
(8). Given an a priory information on the smallest scale of
interest, it is possible to smooth smaller scales in a noisy
signal by preprocessing. As we enhance the signal
afterwards, this smoothing process does not affect the end
result that much and enables operation in a much noisier
environment.

3. RESULTS

We present results obtained by implementing the gradient
dependant forward-and-backward process described above.

A blurred and noisy step edge (Fig. 1b) was processed,
assuming the availability of prior information regarding the
noise power and the approximate size of the original step.
Enhancement of the step is obtained, while simultaneously
denoising the rest of the signal (Fig. 1e).

The second example illustrates simultaneous denoising and
enhancement of an image without any prior information



about the structure of the image and/or the characteristics
of the noise (Fig. 2).

4. CONCLUSION

Examples such as those presented in the previous section
indicate that the generalized forward-and-backward
diffusion process can accomplish simultaneously the
conflicting tasks of enhancement and denoising. The
process is controlled by a set of selected local feature
estimators. This type of adaptive process allows a
sophisticated adjustment of the diffusion strength locally,
and can thereby overcome a major drawback characteristic
of many image-processing procedures: while improving
certain areas of the image, other segments are often
degraded. Our adaptive scheme can often avoid this
phenomena.
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Figure 1. (a) Original step, (b) Blurred signal contaminated by
white Gaussian noise (SNR=5dB), (c-e) Diffusion process after
iterations: 20, 40, 160, respectively.

Figure 2. (a) Original part of sailboat image, (b) Blurred image
contaminated by noise , (c-d) Diffusion process after iterations: 10, 40,
respectively.



